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Abstract

We present in this paper a general narrowing algorithm, based on
relational interval arithmetic, which applies to any n-ary relation on .
The main idea is to define, for every such relation p, a narrowing function
7 based on the approximation of p by a block which is the cartesian
product of intervals. We then show how, under certain conditions, one
can compute the narrowing function of relations defined in terms of unions
and intersections of simpler relations. We apply the use of the narrowing
algorithm, which is the core of the CI.P langnage BNR-Prolog, to integer
and disequality constraints, to boolean constraints and to relations mixing
numerical and boolean values. The result is a language, called CLP(BNR),
where constraints are expressed in a unique structure, allowing the mixing
of real numbers, integers and booleans. We end by the presentation of
several examples showing the advantages of such an approach from the
point of view of the expressiveness, and give some compntational results
from a first prototype.

1 Introduction

The introduction of relational arithmetic within the Prolog language is strongly
related to the Constraint Logic Programming scheme ([4, 6, 9, 10, 8, 23]). As
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it 1s now well-known, the CLP paradigm replaces the unification concept of
the Prolog language by the notion of constraint resolution. Different algebraic
structures have been tackled in the principal available CLP systems in order to
improve Prolog’s expressiveness and efficiency by adding constraint solving on
specific domains. These systems provide processing of linear equations on ra-
tional and floating point numbers (Prolog ITI, CLP(R)), polynomial constraints
over real and complex numbers (CAL), non-linear and transcendental contraints
applying to real intervals (BNR-Prolog), boolean constraints (CHIP, Prolog I1T)
constraints on lists with concatenation (Prolog TIT), and finally constraints on
finite domains (CHIP).

Some years after the birth of the concept, and as the interest in CLP ap-
plications is growing, some general remarks can be made. The first one is that
the majority of the problems which seem to take advantage of the use of CLP
comes from Operations Research. These problems generally include combinato-

rial aspects and the CLP approach requires the use of efficient constraint solvers
over finite domains, especially on bounded integers. The second remark is that
most of the time, the expressive power and efficiency of CLP systems is reduced
by the strong partitioning of the structures in which constraints can be ex-
pressed. This means that one cannot express constraints involving discrete and
continuous domains, that a boolean value cannot be involved in any numerical
constraint, and that it is not possible to use the boolean value associated with
a numerical relation in any boolean constraint.

We are interested here in the use of interval arithmetic in CLP. Functional
interval arithmetic has been introduced by R. Moore [17] to deal with the in-
corect, behaviours of finite precision arithmetic. To provide a relational model
for numeric processing on intervals in Prolog, relational arithmetic on real in-
tervals has been proposed by John Cleary in [5]. The two major drawbacks
of Cleary’s model are the constraint solving restriction to interval-convex rela-
tions (relations built from continuous, monotonic functions) and the use of non-
logical variables which tends to separate constraint solving on intervals from
the CLP scheme. W. Older and A. Vellino, in [19], discuss the introduction
in BNR-Prolog of relational arithmetic on real intervals and propose a general
theoretical framework which makes use of lattice theory to propose a fixed point
semantics for the processing of interval constraint networks and generalizes in-
terval narrowing to any relations. More recently, J.Lee and M. Van Emden
([11]) have focused on a logical semantics for interval narrowing by establishing
links between relational interval arithmetic and existing CLP systems such as
CLP(R) and CHIP. Finally, G. Sidebottom and W. Havens propose in [21] to
use Hierarchical Arc Consistency [13] to deal with constraint propagation on
disjoint intervals.

The aim of this paper is to show that interval arithmetic can be used to define
a CLL.P language in which expressiveness is significantly extended by allowing the
user to express constraints on reals, integers and booleans (including booleans
representing numerical relations) in a unified framework.



In section 2, we introduce the set F of F-intervals and show how any subset
of i} can be approximated by an F-interval. We then extend the notion of
approximation to subsets of ®” and define, for every n-ary relation on &, a
narrowing function which maps F” to F”. We follow by proving the correctness,
contractance, monotonicity and idempotence of these functions.

In section 3, we introduce constraints on real numbers, define the notion
of stable set of constraints, and give an algorithm, which, given a finite set
of constraints, terminates and produces either inconsistency or a stable set of
constraints.

In section 4, we give two important properties of the narrowing function with
respect to union and intersection and show on precise relations how this allows to
compute effectively complex and non interval-convex relations. This is applied
to disequations and integer constraints, and to Boolean constraints which can
make use of numerical operations such as addition or multiplication. Amongst
others, this gives a natural way to express cardinality constraints (see [24]). We
end this section by introducing extended comparison relations which establish
the opposite link between numerical constraints and Boolean constraints, i.e.
allowing the programmer to use numerical relations in Boolean constraints.

Section 5 defines rapidly CLP(BNR), an extension of the Constraint Logic
Programming language BNR-Prolog which includes the different types of con-
straint described above and illustrate the use of CLP(BNR) by presenting a
certain number of program examples and computational results.

We conclude in section 6 and discuss future work on the subject.

2 Interval arithmetic

2.1 Preliminaries

We consider U {—o00, 400}, the set of real numbers augmented with the two
infinity symbols, and the natural extension of the relation < to this set. For
every a,b € RU {—oc,+oc},a < b, we will use the following notations for
intervals:

a.b] = {r € Rla <z <b)

[

[a.0) = {xr € R|a <z < b}
(a,b] ={x e Rlja < z < b}
(a,b) = {z € R|la < x < b}

We will also use the notation {a, b) to denote an interval of any of the above
defined forms.

Let 7 be the set of all intervals. Given a set F' = F'U {—o0,+oc}, where F
is a finite subset of &, we call F-interval any element {a,b) of 7 such that a € F



and b € F. Let F be the set of F-intervals. We recall that the set inclusion
relation is a partial ordering on real intervals, and thus on F-intervals. We call
vector any finite sequence (uy, ..., u,) of subsets of . The ith component of
any vector u is denoted by u;. We call interval vector any vector such that every
w; € I, and F-interval vector any vector such that every u; € F. Let V be the
set of all F-interval vectors.

For every n-ary relation p on R, considered as a subset of £, the ith pro-
jection of p, denoted m;(p) is defined as follows:

mi(p) ={e; € R| Fer, .., 2oy, g1, .-, 2, € R) such that (21,...,2,) € p}

We call block (resp. F-block) any n-ary relation p on R such that there exists
an interval vector (resp an F-interval vector) (uq,..., uy) verifying

P =UL X ... X Up.

Let B be the set of all F-blocks.
For the sake of clarity, we will often thereafter denote any F-block as the

F-interval vector made of its projections!.

2.2 Approximations

In order to introduce the narrowing function associated with any n-ary relation
on R we define the approximation of any subset of ® by an F-interval, and
extend it to the approximation of any subset of ®" by a block.

For every relation p on R considered as a subset of R, the approximation of
p, denoted approx(p), is the smallest (w.r.t. the inclusion relation) F-interval
containing the relation p.

The purpose of this definition is twofold. On one hand, if F-intervals are
defined as being floating point intervals, this definition is closely akin to the
ideas at the basis of relational interval arithmetic and, in the case where p is
reduced to a singleton, introduces the approximation of real numbers by floating
point intervals (see [5]). On the other hand, the generalization which allows p
to be any relation on R (p is not restricted to be an interval) will be used to
deal with non interval-convex relations®. The approx function is then naturally
extended to any n-ary relation on ® in the following way:

Definition 1 For every p C R”, the approzimation of p, denoted approx(p) is
the smallest (wri the inclusion relation) F-block containing p.

The existence of the approximation of any relation i1s based on the closure
of B under intersection. It can also be shown that :

approx(p) = (approx(mi(p)). ..., approx(m,(p))).

THowever, let us mention that B and V are not isomorphic since for any F-interval vector
7= (#1,...,%n), if any of the x;’s is the empty set, then z maps to the empty block.
2 An interval-convex relation, as defined in [5], is a relation whose projections are intervals.



The principal properties of the approx function are monotonicity and idempo-
tence, shown in the two following Lemmas.

Lemma 1 Let p and p' be two n-ary relations on R. Then,

p C p' implies approx(p) C approx(p’).

Proof: Since p C p' and p’ C approx(p’), then p C approx(p’).
Thus, by Definition 1, since approx(p) is the smallest block containing p and
approx(p’) is a block, then approx(p) C approx(p’). 0

Lemma 2 Let p be an n-ary relation on k. Then,

approx(approx(p)) = approx(p)

Proof: Straightforward, since an immediate consequence of Definition 1 1s that
for any F-block u, approx(u) = u. |

Here follows another Proposition which establishes some properties of the ap-
proximation with respect to union and intersection3:

Property 1 Let p, o' be two n-ary relations on R. Then,

approz(p U p') = approz(approz(p) U approz(p’)), (1)
approz(p N p') C approz(p) N approxz(p’). (2)

Proof: The left-right inclusion proof is straightforward in both cases?. Here

follows the right-left proof for (1):

Since p C pUp’ and p' C pUp’, then, by Lemma 1,

approx(p) C approx(p U p') and approx(p’) C approx(p U p’),

thus, approx(p) U approx(p’) C approx(p U p’), and by Lemma 1 and 2,
approx(approx(p)) U approx(p')) C approx(p U p'). O

2.3 Narrowing

The definition of the narrowing function associated to every n-ary relation of
R is the basis of Relational Interval Arithmetic. Informally, given a relation
p and an F-block wu, the result of the narrowing function of p applied to w is
the smallest F-block containing u N p. Here follows the definition and basic
properties of narrowing functions:

30mne can note that B is not closed under set umion.
4Since p C approx(p) and p’ C approx(p’) implies

pUp’' C approx(p) Uapprox(p’) and pnp’ C approx(p) Napprox(p’). Applying Lemma 1 gives
the result




Definition 2 Let p be an n-ary relation on N. The narrowing function of p s
the function o, F* — F", such that for every F-block u,

7 (u) = approz(u N p).

The main properties of the narrowing functions are Contractance (the nar-
rowed intervals are smaller than the initial intervals), Correctness (every real
solution lies in the narrowed intervals), Monotonicity (the narrowing preserves
the inclusion) and Tdempotence (the narrowed intervals have to be computed
but once), as expressed by the following theorem.

Theorem 1 For every p € R, and every F-blocks u,v,

(1) 7 (u) Cu, (Contractance)
(2) uNp="p(u)Np. (Correciness)

(3) w C v implies p(u) C p(v), (Monotonicity)

(4) 7 (7 (w) = p(u). (Idempotence)

Proof: (1) Contractance
uNp C u, then
approx(u N p) C approx(u) (Lemma 1), and

—

7 (u) C u (since u is an F-block).

(2) Correctness

Let us show first that u N p C p (u) N p.

7 (u) = approx(u N p), (Definition 2),
approx(u N p) D uNp, (Definition 1), thus,
approx(uNp))Np Dunp.

Then, we show that uNp D 7 (u) N p.
approx(u N p) C u. (Contractance), thus,

P(w)NpCunp.

(3) Monotonicity
This property is a direct consequence of Lemma 1. In effect, we have
u C v, thus u N p C v N p, then by Lemma 1,

approx(u N p) C approx(v N p)

(4) Tdempotence
A direct consequence of the Contractance property is that:

7 (7 () C 7 (u)



Thus, we have to show that " (7p (u)) D ' (u)

Since uNp C approx(u N p) (Definition 1), then

uNp C approx(u N p) N p. Thus, by Lemma 1,
approx(u N p) C approx(approx(u M p) N p), and finally

() C T (). .

We can now use the narrowing of one particular relation to simplify sets of
relations, as shown in the following section.

3 Applying narrowing to constraint systems

3.1 Constraint systems

Let V be an infinite countable set of variables representing real numbers, and
F=FU{—oc,+oo}, where E is a finite subset of R.

Definition 3 A constraint is an expression of the form p(xy1. ..., z,), where p
is a n-ary relation on R, and every x; is either a variable from V or a constant
from E.

Choosing R and not F as the domain on which the constraints are defined
allows us to make a natural link with Prolog, without the various drawbacks
expressed in [5] (use of non-logical variables, modification of the unification
algorithm, etc.).

Definition 4 A system X is a pair (i.S), where i is a mapping from V U E
wmio F, and S is a finite set of constraints.

Definition 5 A solution ¢ of a constraint system X = (4,5) is a mapping from
V U F into R verifying:

Vee Eo(x) ==
Ve € V,o(x) € i(x)
Vo(zy, ..., 2n) €S, (0(x1),...,0(xn)) Ep

It can be noted that a constraint system can also be defined as a mere finite
set of constraints, since ¢ can be defined as a set of unary relations stating that
a variable must lie between two given bounds. However, although simplifying
the definition, this approach complicates the algorithm and is quite far from
the actual implementation. The purpose of the narrowing algorithm is, given a
constraint system, to compute a fixed point called stable system whose definition
follows:

Definition 6 A system X = (4,.5) isstable iff for every constraint p(xq,...,2,) €
S, ifu=(i(x1),...,i(x,)), then

7w = u



Algorithm

input: a stable system X = (4, .5),
a constraint ¢

S—SU{e},C—{c},i' =1
While C # 0 do
Choose any constraint ¢/ = p(z1,...,z,) from C
w— (1'(x1),...,i'(2,))
If any of the v; is empty then stop, the system (4,5 U {c}) is inconsistent.
For every variable z; in {z,...,2,} Do
If v; #i(x;) then
(@) — v
For every constraint ¢” in S in which z; appears Do C' — C' U {c¢"}.
EndIf
EndFor
C—C-{}
EndWhile

output: inconsistency or
a stable system X' = (¢, S U {c})

Figure 1: A narrowing algorithm

3.2 A narrowing algorithm

The algorithm which is used to compute stable sets of constraints is basically the

one which is used in BNR-Prolog(see [19]), and is quite close to local consistency

algorithms (see [12, 15, 16]) applied to infinite bounded domains and n-ary

relations. The incremental version of the algorithm is described in figure 1.
This algorithm verifies the following properties:

1. The algorithm trivially terminates, since narrowing functions are contrac-
tant and the number of computable F-intervals is finite.

2. The algorithm, as shown in [19] reaches a fixed point which, due to the
monotonicity of narrowing functions is unique and does not depend on the
order in which the constraints are chosen.

3. Due to the correctness of narrowing functions, every solution of (7, SU{c})
is a solution of X',

However, this narrowing procedure, like other local consistency checks is
not strong enough to guarantee, in the general case, the completeness of the



algorithm which can compute a stable system X' = (¢, 5 U {c}) where S U {c}
is inconsistent.

4 Constraints on reals, integers and Booleans

The previous sections define narrowing functions but do not give any indications
on the type of relations they can handle usefully and do not provide any way
to compute them. This is the object of this section. Since we are interested
here in more practical issues, we will consider F-intervals as being floating point
intervals, for any given floating point representation.

Interval arithmetic, as presented in [5], generally restricts the definition of
the narrowing function to these relations p such that for every floating point
vector u, every projection of pMw is an interval vector. These relations are called
mierval conver relations. Here follows the definitions for interval-convexity and
its natural extension to F-interval convexity.

Definition 7 A n-ary relation p on R is interval convex (resp. F-interval con-
vez) if for every block (resp F-block) uw and every i in {1,... n}, m(pNu) is an
interval (resp. an F-interval).

When restricted to this case, the equivalent of the approximation function is
based on an “outward rounding” function which associates to any interval T the
smallest floating point interval J such that I C J. Examples of interval convex
relations are:

add= {(x,y,2) € N3, x4+ y = 2},

leq= {(z.y) € ®*, = < y}.

le={(#,y) € R, = < y},

eq={(x,y) e R*,z =y}

For example, for any floating point vector u = (uy,us,us) the resulting

floating point vector v = (v1, v2, v3) after applying add is given below:

v = up N (u3 € uz),

vy = us N (u3 © uy),

vz = uz N (up © uz).

Where ¢ and & are the regular interval addition and interval substraction®.
Similar formulas allow to compute the narrowing functions of the other relations

5For a more detailed definition of these functions one can see [17].



cited above. Some usual relations are much more difficult to deal with, for
example multiplication. The natural relational definition of multiplication is:

mult = {(z,y,2) €ER>, 2 = = x y}.

The mult relation is not interval convex and for every F-block u, the projections
of mult Nu are generally not intervals, but disjunctions of intervals, as it can be
verified in the following example cited in [5]:

if u=([-2,3], [0, +oc], [1,1]), then
m(mult Nw) = [-2, 3],
mo(mult N u) = [—oo, —1/2] U[1/3, + ],
mz(mult Nw) = [1, ])

However, as it is suggested in [5], one can express mull as the union of two
interval convex relations noted multt and mult™, whose definition is given above
and whose narrowing projections algorithms are precisely presented in [5]:

multt = {(z,y,2) e R%, 2> 0,2 x y =z},
mult™ = {(z,y,2) e R}, 2 < 0,2 x y = 2}.

The solution proposed in [5] and also in [11] is to deal with this union of
interval-convex relations by choosing one of these sub-relations, and postpone
the processing of the other relation by effectively creating a Prolog choice point,
or any other explicit backtracking procedure. In contrast, making use of the
definitions proposed above, the computation of the narrowing function on the
same example gives the following result:

mult(u) = ([~2, 3], [- 00, +oc], [1, 1])

The aim of the following section is to formally describe how one can compute
such relation decompositions.

4.1 Union and intersection of interval-convex relations

As it will be shown in the next sections, it is crucial to be able to make use of the
expression of any relation in terms of unions and intersections of simpler (i.e.
interval convex) relations. In this section, we present two results. The first gives
a way to compute the union of two relations, and the second expresses conditions
under which a similar processing can be done with respect to intersection. Here
follows the decomposition Property:

Property 2 (Decomposition) Let p and p’ be two n-ary relations on R. Then,
for every block u:

_ /

pUp' () = approz(p (u)Up (u)) (3)

10



Proof:

pUp (u) = approx(un(pUp’))

= approx((uNp)U (unp)
(
(

= approx(approx(u N p) Uapprox(u N p')), (Property 1)

_
— approx(7 (u) U o (w))
O

With respect to intersection, a similar reasoning leads tothe following prop-
erty (the equality does not hold in the general case) :

—

PO () C T ()N o () (4)

Tt 18 often mentioned that to deal with relations which are expressed in terms
of intersection of interval-convex relations, one can decompose them and apply
the narrowing algorithm. This way of doing does not guarantee to compute the
narrowing of the intersection in the general case, as it is shown in the example
below. Consider the relation p = p1 N pa, where:

p1={(x,y) €R* |z =y} and pp = {(z.y) € R* | 2 = —y}

Let us now consider v = ([—1,1],[=1,1]). It is clear that p"(u) = ([0, 0], [0, 0]),

but applying the narrowing algorithm on the system S = {z € [-1,1],y €
[1,1],2 = y,z = —y}, we are not able to narrow any of the two intervals.

However, in an interesting number of special cases, this way of computing
the intersection is correct, as it is shown in the following. We first introduce the
notion of i-dependency.

Definition 8 (i-dependancy) A n-ary relation p on R is i-dependant (i €
{1,....n}), iff. Y(x1,....2n) € R? VY € R,

(1, 2n) Ep<=r (&1, i1, Y, Tig1,.... Tpn) EP

The negation of i-dependancy is called ¢-independancy. An immediate conse-
quence of this definition is the following property we give without proof.

Property 3 Lel p be an n-ary relation on R, then, for all i i {1,... n}, the
two following propositions are equivalent:

1. p 1s i-dependant
2. there exists a block u such that mi(pNu) £ 0 and m;(p Nu) £ m(u).

Then we show the following theorem (the proof is given in Appendix):

11



Theorem 2 (Composition) Let p and p' be two F-inlerval convez, n-ary re-
lations on R. If there exists al most one i in {1,... ,n} such that p and p’ are
i-dependant then for every F-Block u:

_

P07 (W) =7 (0 ()N o (7 (w)

A simple example of application of this theorem is the computation of the
following relation®:

p={(x,y) €N |z =y}n{(z,y) €R* |z >0}

Let us call p; = {(z,y) € R? | = y} and ps = {(z,y) € R? | = > 0}. If we
consider u = ([-2,1],[—1,2]) then

pi(w) = (=11][=1,1]),
P (pr(u)) ([0, 1], [-1,1]),
pz(u) ([0, 11, [-1,2)),
pi(pz(u)) ([0,1],[0,1]),
p3(pi(w) N pr(pz(w) = ([0,1],[0,1])

It is easy, in this case, to verify that " (u) = ([0, 1], [0, 1])

4.2 Integer constraints and disequality

The efficient processing of constraints on finite domains, and thus on bounded
integers is one of the most important functionalities required in CLLP to solve
many constraint problems. A narrowing algorithm for integer and disequality
relations is suggested by John Cleary in [5], with the conclusion that the appli-
cation of interval narrowing to these fundamentaly non interval-convex relations
is probably worthless due to the great number of created choice points, and the
weakness of the narrowing applied to disequality.

However, the narrowing approach presented here computes integer con-
straints quite efficiently. Informally, the effect of narrowing on variables that are
constrained to represent integer values is to reduce their domain to closed inter-
vals whose bounds are integers. Here follows the description of the algorithms
to compute the narrowing function for integer (denoted by int). If u = {a, b) is
an Fanterval, then:

7
int(u) = [[a'], [V']]
8this is, in fact one half of the relation “absolute value,

abs = ({(z,y) €R* [z > 0}n{(x,y) €R® |z =y})U
{(z,y) €R? |z <0}n{(z,y) € R |z = —y})

12



where [a'] is the smallest integer greater or equal than ', [0'] is the greatest
integer smaller or equal than &', and
ad =a+ 1,0 =bif u=(a,b] and @ and b are integers,

"=a,b =b—1ifu=][a,b) and a and b are integers,
d=a+ 1,0 =b—1if u=(a,b) and a and b are integers,
a =a,b' =bif u={a,b) and u is not of one of the above forms.

In contrast with the continuous domains, where the approximation of reals

by intervals makes the disequality relation practically useless, disequations are
of great importance in the case of finite domains as it has been shown on many

=)

/

examples. The disequality relation is given by neq= {(xz,y) € R? | = # y}.
It can also be expressed as the union of two already defined interval convex
relations as follows:

neq = {(z,y) € R |z <y} U{(x.y) e R’ |z >y}

Thus, the Theorem 2 can be applied to compute neq. Practically, let us
consider two variables in the relation neq. If one of their domains is reduced to
one value which is a closed bound of the other domain, then this second domain
is narrowed by removing that value. For example:

z € (0,2.12],integer(z). 2 #2 — x =1,
r € (0,3.99],integer(z), 2 #2 =— =z €][1,3].

4.3 Boolean constraints

The introduction of Boolean constraints into this framework i1s done by consid-
ering Boolean variables as integers whose possible values are taken in [0, 1]. The
Boolean relations are defined as follows:

and = min = {(z,y,z) € R® min(z,y) = z}
or = max = {(z,y,2) € R, max(z,y) = 2}
not = {(2,y) €M,y = 1 - x)

The design of an algorithm to compute min and maz is not trivial. A case
analysis based on the comparisons of the six involved bounds leads to the study
of ninety different cases. However, we can apply Property 2 and Theorem 2
since men and maz can be expressed in the following way:

min = ({(z.y,2) eR®, 2z <ytn{(z,y,2) eR®z=2})U
({(z.y,2) €% 2 >y} {(z,y,2) € R, 2 = y})

max = ({(x,y,z) eR®x>yln {(z,y,2) € R,z = x}) U
({(z.y,2) €% e <y} {(z,y,2) € R, 2 = y})

13



The narrowing algorithm applied to such defined Boolean constraints, when
associated with Boolean enumeration, is comparable to local consistency algo-
rithms based on the Davis and Putnam procedure (see for example [14]).

Basic examples of Boolean constraint narrowing are:

xVli=y —= y=1
rvli=1 = z=1
rAhy=1 = z=1y=1

xrVy=0 —= 2x=0,y=0

Moreover, based on the fact that Booleans are defined as numbers, one can
express relations between Boolean variables by using numerical relations. For
example, to state that in a sequence (a1,...,2,) of Boolean values, at least
a of them and at most & of them must be true, one can write the following
constraint”:

a<wi+...+x, <bh

Finally, here are some other usual Boolean functions®:

a=>b : a<b,

ifathenbelseec : 2—a—-bx(1l—c+a)=0
axorbh : a#b.

4.4 Extended numerical relations

One other important feature missing in the standard CLP systems is the pos-
sibility to use comparison relations in Boolean constraints and thus to express
constraints like: given three numbers #, y and z, if # < y then z < z < y else
(r < 2) V(2 < y), which can be expressed as®:

(<y)VE<z<y)A(e <y V(e <) V(2 <y)) =1,

or more simply:

(z>22)+(z<y)=(z<y)+1

The processing of such constraints is useful as soon as one considers problems
mixing numbers and Boolean values. One way to introduce these constraints is
to modify the definition of such relations as equality, inequality and disequality
by considering ternary relations involving one Boolean parameter. Here are

"This is the Boolean expression of the cardinality operator proposed in [24].

8 Assuming that < and # are ternary relations whose third parameter is a Boolean value,
as it will be developped in the next sections.

?See previous note.
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some of these relations:

eq = ({(J:,y,z) eR® r=yln {(z,y,2) € R 2= 1}) U
{(z,y,2) e R 2 £y} n{(z,y.2) e R®, 2 = 0})

geq = ({(x,y,z) eR® x>yl {(z,y,2) € R 2= 1}) U
({(0,5:2) € R, < g} 0 {(,4.2) € B2 = 0})

Here again, we can apply Property 2 and Theorem 2 to compute correctly
this type of constraints.

5 Examples and computational results.

In this section, we present some examples of the possible use of the different
constraints described above, and we give some computational results, based
on a first prototype of a language called CLP(BNR), which is an extension of
BNR-Prolog (see [19]) which includes the processing of the integer and Boolean
constraints described in the first part of the paper. The syntax is a superset
of the standard Edinburgh Prolog syntax and we will assume the reader is
familhar with the notions of variables, constants, terms, lists, rules, programs,
queries and their usual notations. The additional constraints include unary
type constraints, Boolean relations, and ternary numerical relations whose third
parameter 1s a Boolean. A functional notation of the constraints is syntacticaly
provided to simplify the writing of programs. A more detailed presentation of
CLP(BNR)from the user point of view can be found in [20].

From the implementation point of view, this prototype consists mainly of
a BNR-Prolog top-level implementation of interval arithmetic with specific as-
sembler subroutines to compute basic narrowing functions. Among other im-
plementation imperfections, there is no specific way to compute inequalities
and the actual processing of integers, and thus Booleans, is based on the gen-
eral BNR-Prolog floating-point representation. This explains why the following
computational results are much slower than what we could expect from a final
integrated implementation of the system. These results are mainly given here to
provide a general idea on performances and experimental complexity analysis.

The results have been computed on a standard Macintosh IT (2 Mips). For
the problems presented below, we have separated the set-up part, where Prolog
behaves like a macro-processor and builds constraint systems, and the enumer-
ation part, where the actual solutions are computed. Most of the time, the
result tables indicate the set-up time and the execution times in seconds and
the number of necessary backtrackings to find the first solution and all solutions
(including the proof that they are all computed). However, on some examples
some of these results have been omited for practical reasons.

We end this preamble by saying a few words on enumeration. As it is well-
known, local consistency algorithms on finite domains are complete when they
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are used together with enumeration procedures which compute non determinis-
tically the actual solutions of the considered systems. In fact, a massive part of
the interest of such approaches relies on the efficiency of the enumeration. and
thus on a number of particular heuristics. Among these, the most used is the
“first-fail principle” which consists in enumerating first the more constrained
variables (the variables whose domain is the smallest and/or the variables ap-
pearing in the greatest number of constraints). As the processing of disequali-
ties, as described here, is weaker than the mere deletion of the prohibited values
from the corresponding domains'® and due to our top-level implementation, it is
more difficult in our case to select the more constrained variables. We have thus
implemented an approximation of the first-fail principle which consider first the
variables with the smallest difference between their upper and lower bounds. A
more sophisticated implementation could perfectly involve a domain bit-map in
the integer case and apply this heuristic more accurately.

5.1 Linear arithmetic on integers

Even though the originality of the system presented here is ita ability to tackle
constraints which do not fit in the usual specific integer linear case, we just
give here some benchmarks for linear problems to give a general idea of its
performances. As it has been stated before, it 1s also clear that our aim here
is not to compete, from the efficiency point of view, with specialized systems,
like CHTP, whose implementation has been particularly studied (see for example
[1]). The first example with which we propose to illustrate integer constraints
is the well-known cryptarithmetic problem DONALD +GERALD = ROBERT,
whose purpose is to give a different value, taken between 0 and 9 to each letter,
in order to verify the corresponding additions. The second one is the too famous
N queens problem, which, totally based on integer disequalities, is certainly not
one of our best cases. Here follows the computation results for these problems:

Problem Set-up time First solution All solutions
Back | Enum time | Back | Enum time
DONALD 1.75 s 2 0.38 s 8 0.90 sec
12 Queens 6.73 s 58 26.26 s | n/a n/a
14 Queens 10.05 s 49 24.73s | n/a n/a
16 Queens 14.33 s 50 26.76 s n/a n/a

Due to the very big number of acceptable solutions to the N-Queens problem,
as soon as N > 12, the computation of all of them is quite unrealistic'!.

10The computed intervals are only narrowed when the value is also one of the interval's
bounds.

1To give an idea, the algorithm proposed in [14] finds the 14200 solutions for N = 12 in
4:30 hours.
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5.2 Non-linear arithmetic on integers

As a first example of non-linear constraints on integers, we propose the following

problem. Find n integers x1,...,2,,1 < x; < n, verifying the two following
conditions:
n n n n
i=1 i=1 i=1 i=1
Any permutation of (1,...,n) is an obvious solution, but as n is growing,

there are other solutions. To avoid the computation of symmetrical solutions,
we impose the following constraint: z; < 2 < ..., < x,. The first n for which
there 18 more than one solution is 9. Here follow the results for this program:

N || Set-up First solution All solutions Nb Sol
Back | Enum time | Back | Enum time

9 0.98 s 115 6.16 s 392 19.73 s 2

10 1.11 s 339 17.61s | 1085 55.83 s 6

11 1.25s | 1025 53.35s | 3179 163.80 s 6

12 1.31s | 1423 77.83s | 9323 487.30 s 22

5.2.1 Pythagorean triples and other Diophantine equations
Two other interesting problems are the following ones:

1. Find three positive integers z,y, z such that:
eyt =2t (5)
2. find four positive integer x,y, w, z which are solutions of the equation:
2?4+ y? +u® =2 (6)

The CLP(BNR) program to solve these two equations, assuming the consid-
ered integers are bounded, is straightforward. In the first case (Equation 5), it
is well known that the solutions are infinitely many and can be generated by
the following equations:

r=u?—v?y=2uv,z=u’+ %

where u and v are any integers whatsoever satisfying the conditions that u >
v > 0,(u,v) = 1, and one of u and v is even (see [22]). The second problem is
more interesting since, as far as we know, the infinitely many solutions cannot
be generated with any other equations. Figure 2 shows the program to find all
integers (bounded by a positive integer n) verifying Equation 6. We can assume,
without loss of generality that: z < y < w. Here follow the computation results
for these two problems:
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diophantine(N):-
[X,Y,Z,W]:integral(1l,N),
Xk 2+ Yk 24k k2==T* %2
Wo>= Y, Y >= X,
enumerate([X,Y,W]).

Figure 2. Program for x? 4 y2 4 ow? = 22

N Equation 5 Equation 6

Enum time | Back. | Nb Sol. | Enum time | Back. | Nb Sol.
20 0.65 s 13 6 3.36 s 89 22
50 2.78 s 37 20 30.00 s 564 141
100 9.23 s 87 52 200.60 s | 2299 573
200 31.90 s 192 127 n/a n/a n/a
500 179.96 s 559 386 n/a n/a n/a

5.3 Boolean constraints

We have tested our prototype on classical Boolean henchmarks. Tt should be
noted that we have used, as often as possible, the addition on boolean vari-
ables to express cardinality constraints. Queens is the Boolean version of the
N-Queens problem previously described. Schur refers to the Schur Lemma:
Considering the N first integers, if one wants to place them in three boxes in
such a way that, for every box, and for every integers @ and b, a and 2a are not
in the same box, and if @ and b are in the same box, then a 4+ b is not. Pigeon
is the pigeon-hole problem, where n pigeons have to be placed in p holes, with
the condition that only one pigeon can be placed in one hole. Here follows the
computational results for these benchmarks:

Problem Set-up | First solution All solutions Nb Sol
Back | Enum | Back Enum

queens 8§ 1.93 s 21 | 094 s 391 19.56 s 92

Schur 13 2.45 s 91 046 s 179 6.76 s 18

Schur 14 291 s - - 179 6.88 s 0

pigeons 7/7 || 0.84 s 0] 093s | 5039 | 146.65 s 5040

pigeons 8/7 || 0.98 s - - | 5039 | 105.88 s 0

If we refer, for example to recent benchmarks provided in ([14]), the effi-
ciency of our prototype is nearly equivalent or slightly better. Considering the
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strong implementation restrictions cited above, we thus can hope our system will
provide, in addition to, and with the help of numerical constraint processing, a
fairly efficient Boolean solver.

5.4 Extended numerical relations

An example of the possible use of these relations is cited both in [6] and [23] as
the “magic series” problem. The purpose of this problem is to find a sequence of
n non-negative integers (xg,...,&,—1) such that for every ¢ € {0,...,n — 1}, 2;
is the number of occurences of the integer ¢ in the sequence. In other words, for
every i € {0,...,n— 1},

n—1

Xy = Z(l‘] = i),

j=0

where the value of (x = y) is 1 if (¢ = y) is true and 0 if (# # y) is true.
Moreover, it can be shown that the two following properties are true'Z:

1
x; = n, (7)

n

Il
>

7

1
1T, = . (8)
0

n

2

We have programmed this problem in CLP(BNR), without and with the

additional constraints. Figure 3 shows the program without any additional
redundant constraints and here follows the computation results for this problem:

N Set-up | Without add. cstrt With Eq. 7 With Eq. 7 & 8

back. enum | back. enum | back. enum
5 1.60 s 16 17.33 s 5 0.40 s 2 0.20 s
10 6.48 s 139 17.33 s 15 1.96 s 8 1.00 s
15 || 14.43 s 466 112.56 s 24 8.85 s 11 3.66 s
20 || 25.66 s n/a n/a 35 34.68 s 18 11.03 s
25 || 40.06 s n/a n/a 44 1 108.51 s 21 24.66 s
30 || 57.71 s n/a n/a 95 | 281.16 s 28 | 51.03s

12in effect computing the total number of occurences of numbers gives Equation 7, while

the study of the sum of the elements of the sequence gives Fquation 8
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magic(N,L):-
length(L,N),
L : integer(0,_),
constraints(L,L,0),
enumerate(L).

constraints(L,[],N). constraints(L,[X|Xs],I):-
sum(L,I,X),
J is TI+1,
constraints(L,Xs,J).

sum([],I,0). sum([X|Xs],I,S):-
== (X::I) + S1
sum(Xs,I,S1).

Figure 3: Program for the magic series problem

5.5 Scheduling with disjunctive constraints

This type of constraints can also be used to deal with scheduling problems with
resource allocation. Let us consider any scheduling problem involving a set of
tasks T = {t1,...,1,}. To each task #; is associated a pair (b;,d;), where b; is
the beginning and d; 1s the duration of task #;. The values for beginnings and
durations are taken in a finite set of time segments'®. To this set of tasks is
associated a set of precedence and distance constraints'®. Let us now introduce
a set of resources and consider, amongst others, two tasks, {1 and ¢2 which share
the same resource. Then the following constraint expresses that tasks ¢; and s
cannot be executed concurrently:

(b1+dl < b2) v (b2+d2 < bl)=1 (9)

One way to treat these constraints, as described in [23], is to use the constraints
as choice points and to find non deterministically an ordering of the tasks which
satisfies the other precedence and distance constraints. In our system, we can
make use of the extended numerical relations to express directly the constraint
9 as shown in the following CLP(BNR) rule:

13 Although the set of possible segment values is finite, one is not constrained to use a
finite domain representation for them, as solutions can be found using narrowing, without any
enumeration step.

14Precedence constraints are of the type b; + d;, < b;, meaning that task t; has to be
completed before the beginning of task ¢;. Distance constraints are any constraints which can
be represented as precedence constraints by introducing new tasks. An example of distance
constraint is: task ¢; must begin at least n segments after task ¢; has been completed.
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disj_constraint(B1,D1,B2,D2):-
(B1+D1 =< B2) + (B2+D2 =< B1) ==

The addition, as stated in the previous sections, is used to express the fact
that the disjunction is exclusive. After having set deterministically the whole
constraint system, the system can find a solution thanks to boolean enumeration.
It has to be noted that as soon as either a boolean or a numerical value is known,
the computation of the new stable system involves narrowing of other boolean
and numerical values, possibly pruning dramatically the search tree.

We have applied this technique to the bridge problem, cited in [23]. This
problem involves fourty six tasks, and more than six hundred constraints. In
order to compute the solution which guarantees the minimum cost, we have
implemented on top of the system a control predicate which computes a branch
and bound procedure. Here are the computational results for this problem:

Bridge Set-up time | Nb of back. | Enum. time
First solution (cost 110) 12.03 s 0 1.61s
Best solution (cost 104) - 4 528 s
Proof of optimality - 149 28.66 s

6 Conclusion

We have shown in this paper that interval arithmetic is a good candidate for
constraint solving in a CLP language including constraints on real numbers,
integers and Booleans. This approach provides a unified framework in which
all these different types of constraints can be freely mixed. This allows the
programmer to deal with problems where the combinatorial part is coded with
integer constraints and involving real coefficients, to include numerical relations
in Boolean systems, and to improve the expressiveness of Boolean constraints by
making use of addition, multiplication and numerical relations. The expressive
power of such a language is thus an extension of the possibilities of other CLLP
systems, with the two important exceptions of constraints on lists (Prolog TIT,
see [6]) and linear resolution on rational/reals numbers where Prolog IIT and
CLP(R) propose specific and complete algorithms based on Gaussian elimina-
tion and Simplex-like methods. The range of possible applications remains close
to what has been already tackled with CLP methods (planning, scheduling, con-
figuration, resource allocation, circuit design and testing, engineering-oriented
KBS, etc.), while strongly tightening the links between the combinatorial and
(generally non-linear) numerical aspects of the kind of problems cited above. Fu-
ture work concerns implementation improvements, development of applications
for “real-life problems”, and design of eventual communications with complete
algorithms for special cases such as rational linear programming.
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Appendix: Composition Theorem

Theorem 3 (Composition) Let p and p' be two F-inlerval convez, n-ary re-
lations on R. If there exists al most one i in {1,... ,n} such that p and p’ are
i-dependant then we have the two follownng properties:

1. pNp' is F-interval conver
_— 7 —
2. for every F-Block u, pNp'(u) = (o' (w) N p' (Tp'(u))
We first give without proofs a certain number of technical Lemmas:
Lemma 3 Let p be an n-ary relation on R, then for every i in {1,... n},
mi(appro(p)) = approx(mi(p))

Lemma 4 Let p and p’ be two n-ary relations on R, then for everyi in {1,... n},
if p and p' are both i-independant, then p N p' is i-independant.

Lemma 5 Let u and v be two F-blocks. If unNv # 0 then
Vie{l,...,n}, m(unv)=m(u)Nmv).
Lemma 6 Let p be an n-ary relation on R and u a F-block, then
approx(p Nu) C u

Lemma 7 Let p and p' be two n-ary relations on R,u a F-block. Then the two
following propositions are true:

1. p' approz(p Nu) C approz(p Nu) N approx(p’ Nu)

—
/

— = v —
2. p (o ()0 p" (o (u)) C p' (u) 0 ()
We finally establish the proof of the Composition theorem:

Proof: The proof for the case where there is no common i-dependency is a
trivial specialization of the proof for the general case. We can thus consider
without lack of generality that p and p’ are both 1-dependant and that there
exists p,p’ € {2,...,n} such that:

p is i-independant for all : € {p + 1,p'},

p' is j-independant for all j € {p’ + 1,n}.

(A) pnp' Nu=10.
By definition of the approximation, we have:
_

pOp(u)=10
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By Lemma 7 (2) it is sufficient to show that " (u) N y(u) =0
—
Let us suppose that m1(p (u) N p' (u)) # 0, then

—

(7 () N (o (w) # 0, (Lemma 5)

-
Let @1 be an element of 7 (7 (u)) N mi(p' (w)).
Since p and p’ are F-interval convex (Lemma 6),

ElXEpﬁ?l | X:(.’1717,’1,‘27...7.’pr7.’lfp+1,...7.’prl7.’lfpl+1,...7.’lfn)
I ! o I ! I I I I
AX'ep Nu | X' = (21,25, 2, T, T Ty )
— / / / /
Let V= (21,25, .. &, Tyt ooy Ty Tplgdy -+ oy T

Since X € p and p is i-independant for all ¢ € {2,...,p'}.Y € p, (Definition 8)
Since X' € p' and p' isi-independant forall i € {p’,... , n}, Y € p/, (Definition 8)
Therefore:
_
/

Veem (7 (w) N m(p (W)Y € (¢ Npnu) | m(Y) = 2

Which is in contradiction with the fact that p N p’ Mu = @ and ends the proof
for this case
(B) pnp’ Nnu 0.
Let us first remark that two F-blocks are equals iff all their projections are
equals.
(I) First case: Both relations are i-dependant (i = 1).

Since the proof of the left-right inclusion is trivial, and applying L.emma 7

(2), it is sufficient, to show that

_—

mi(7 ()N p (w) C mip 1 pl(u))

Since p(u) N 7(u) # 0, and applying Lemma 5 we have:
m(p () N p' (W) = mi(p () Nl pf (u))

—

Let x be an element of m; (7 (u)) N m(p' (u)), then

IXeDP(w) | X=(2.22, . Tp. Tpi1,-... Tn),
IX'ep(u) | X' =(x,2h, .. 2,20, E)

n
Since for all j € {2,...,p},p is j-independant and
forall k€ {p+1,...,n},p" is k-independantand thus:
X" = (,1:,.172,...,mp,m;_l_l,...,m;) Epnp' Nu

The intersection of two F-intervals being an F-interval, this ends the proof of
both properties for this case.
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(I) Second case: Both relations are i-independant (i € {2,...,p})

T _ , .
mi(p N p'(u)) = m(approx(p N p’ Nw)), (Definition 2)
= approx(m(p N p' Nu)), (Lemma 3)
= approx(m;(u)), (Lemma 4)

= U;.

Applylng Lemma 5, since pNp' Nu #@ we have
mi(7 (0 ()0 (T () = (7o () 0 7 (7 (),

We have also:

_
(7 (7 ()

= m;(approx(p Napprox(p’ Nu))), (Definition 2)

= approx(m;(p N approx(p Nu))), (Lemma 3)

= approx(m; (approx(p’ Nu))). (p is i-independant)

= approx(approx( i(p' N w))), (Lemma 3)

= approx(m;(p’ Nu)), (Idempotence of approximation)

= approx(m;(u)), (p' is i-independant)

= u;.

_
The same reasoning leads to m;( p’ (p'(u))) = u;, Since u; is an F-interval, this
ends the proof of both properties for this case.

(III) Third case: p isi-independant, p is i-dependant (i € {p+1,...,p'}).

From Definition 2 and Lemma 3, it comes:

/ /
Ti(p N p'(u)) = approx(m;(p N p’ N u))
As shown in the previous part, we have also:

—

(7 (6 () N 0 (7 (1)) = approx(mi(p N ¢ (1)) A approx(mi(p' 0 7 (1)),
On the other hand,
approx(wi(p N 7' (u)))

= approx(m;(approx(p’ Nu))), (p is i-independant and Prop 3)
= approx(m;(p' Nu)), (Lemma 3 and Idempotence of approximation)

—

Since approx(w; (p' N 7 (u))) C approx(m;(p’ N u)), (Lemma 6),

(7 (7 (W) N 7 (F(w))) = approx(mi(p' N 7 (u))

It remains to establish the following equality:

approx(m;(p N p' Nu)) = approx(m;(p’ N o (u)))
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which is true if

mi(p N p' Nu) = mi(p' 0P ()
The left-right inclusion is straightforward.
Let 2 € mi(p' N p'(u)). Then

IX epnp(u) | X = (z1,20,. .., Zp, Tpy1, .-, 00— L@, @i+ 1,0 Tpr Tprgt, v, Ty)
—

Since p' N p'(uw) C P (u)N p'(u) (Lemma 7), and applying case I, we have:

HX/E(p/ﬂpﬂuHX’:(.171,.1:/2,...,m;,m;_l_l,...,m/i—],m/,mi/—k],...,m;,,m;,_l_l,...,.,

Since X’ € p and p is i-independant for all i € {2,... p'},

Y = (21,20, ., 2p, Tpp1,. o xi— Lxwi+ 1, wp g, 2) €p

Since X € p’ and p’ is i-independant for all i € {p’,... , n}, Y € p’.

Therefore:
Vo e m(p N p(w)3Y € (p Npnu) | m(Y)=x

Furthermore, since p’ is F-interval convex, m;(p’ N p"(u)) is an F-interval.
A symmetric reasonning handles the case where i € {p’+1,...,n} and concludes
the proof of the theorem. O
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