
Applying Interval Arithmetic to Real, Integer and
Boolean Constraints

Fr�ed�eric Benhamou�William J. Olderybenhamouuniv-orleans.fr, wolderbnr.ca
Bell Northern Research

Accepted for publication in JLP 94/95

Abstract
We present in this paper a general narrowing algorithm, based onrelational interval arithmetic, which applies to any n-ary relation on <.The main idea is to de�ne, for every such relation �, a narrowing function�!� based on the approximation of � by a block which is the cartesianproduct of intervals. We then show how, under certain conditions, onecan compute the narrowing function of relations de�ned in terms of unionsand intersections of simpler relations. We apply the use of the narrowingalgorithm, which is the core of the CLP language BNR-Prolog, to integerand disequality constraints, to boolean constraints and to relations mixingnumerical and boolean values. The result is a language, called CLP(BNR),where constraints are expressed in a unique structure, allowing the mixingof real numbers, integers and booleans. We end by the presentation ofseveral examples showing the advantages of such an approach from thepoint of view of the expressiveness, and give some computational resultsfrom a �rst prototype.

1 Introduction
The introduction of relational arithmetic within the Prolog language is stronglyrelated to the Constraint Logic Programming scheme ([4, 6, 9, 10, 8, 23]). As

�Permanent address:Groupe d'Intelligence Arti�cielle, Facult�e des Sciences de Luminy,case 901,163, avenue de Luminy,13288 Marseille Cedex 9 FRANCE, benham@gia.univ-mrs.fr,currently visiting BNR until January 1993yBell Northern Research, Computing Research Laboratory, PO Box 3511, Station C, K1Y4H7 Ottawa, Ontario, Canada
1

it is now well-known, the CLP paradigm replaces the uni�cation concept ofthe Prolog language by the notion of constraint resolution. Di�erent algebraicstructures have been tackled in the principal available CLP systems in order toimprove Prolog's expressiveness and e�ciency by adding constraint solving onspeci�c domains. These systems provide processing of linear equations on ra-tional and
oating point numbers (Prolog III, CLP(<)), polynomial constraintsover real and complex numbers (CAL), non-linear and transcendental contraintsapplying to real intervals (BNR-Prolog), boolean constraints (CHIP, Prolog III),constraints on lists with concatenation (Prolog III), and �nally constraints on�nite domains (CHIP).Some years after the birth of the concept, and as the interest in CLP ap-plications is growing, some general remarks can be made. The �rst one is thatthe majority of the problems which seem to take advantage of the use of CLPcomes from Operations Research. These problems generally include combinato-rial aspects and the CLP approach requires the use of e�cient constraint solversover �nite domains, especially on bounded integers. The second remark is thatmost of the time, the expressive power and e�ciency of CLP systems is reducedby the strong partitioning of the structures in which constraints can be ex-pressed. This means that one cannot express constraints involving discrete andcontinuous domains, that a boolean value cannot be involved in any numericalconstraint, and that it is not possible to use the boolean value associated witha numerical relation in any boolean constraint.We are interested here in the use of interval arithmetic in CLP. Functionalinterval arithmetic has been introduced by R. Moore [17] to deal with the in-corect behaviours of �nite precision arithmetic. To provide a relational modelfor numeric processing on intervals in Prolog, relational arithmetic on real in-tervals has been proposed by John Cleary in [5]. The two major drawbacksof Cleary's model are the constraint solving restriction to interval-convex rela-tions (relations built from continuous, monotonic functions) and the use of non-logical variables which tends to separate constraint solving on intervals fromthe CLP scheme. W. Older and A. Vellino, in [19], discuss the introductionin BNR-Prolog of relational arithmetic on real intervals and propose a generaltheoretical framework which makes use of lattice theory to propose a �xed pointsemantics for the processing of interval constraint networks and generalizes in-terval narrowing to any relations. More recently, J.Lee and M. Van Emden([11]) have focused on a logical semantics for interval narrowing by establishinglinks between relational interval arithmetic and existing CLP systems such asCLP(<) and CHIP. Finally, G. Sidebottom and W. Havens propose in [21] touse Hierarchical Arc Consistency [13] to deal with constraint propagation ondisjoint intervals.The aim of this paper is to show that interval arithmetic can be used to de�nea CLP language in which expressiveness is signi�cantly extended by allowing theuser to express constraints on reals, integers and booleans (including booleansrepresenting numerical relations) in a uni�ed framework.
2

In section 2, we introduce the set F of F-intervals and show how any subsetof < can be approximated by an F-interval. We then extend the notion ofapproximation to subsets of <n and de�ne, for every n-ary relation on <, anarrowing function which maps Fn to Fn. We follow by proving the correctness,contractance, monotonicity and idempotence of these functions.In section 3, we introduce constraints on real numbers, de�ne the notionof stable set of constraints, and give an algorithm, which, given a �nite setof constraints, terminates and produces either inconsistency or a stable set ofconstraints.In section 4, we give two important properties of the narrowing function withrespect to union and intersection and show on precise relations how this allows tocompute e�ectively complex and non interval-convex relations. This is appliedto disequations and integer constraints, and to Boolean constraints which canmake use of numerical operations such as addition or multiplication. Amongstothers, this gives a natural way to express cardinality constraints (see [24]). Weend this section by introducing extended comparison relations which establishthe opposite link between numerical constraints and Boolean constraints, i.e.allowing the programmer to use numerical relations in Boolean constraints.Section 5 de�nes rapidly CLP(BNR), an extension of the Constraint LogicProgramming language BNR-Prolog which includes the di�erent types of con-straint described above and illustrate the use of CLP(BNR) by presenting acertain number of program examples and computational results.We conclude in section 6 and discuss future work on the subject.
2 Interval arithmetic
2.1 Preliminaries
We consider < [f�1;+1g, the set of real numbers augmented with the twoin�nity symbols, and the natural extension of the relation � to this set. Forevery a; b 2 < [f�1;+1g; a � b, we will use the following notations forintervals:

[a; b] = fx 2 <ja � x � bg
[a; b) = fx 2 <ja � x < bg
(a; b] = fx 2 <ja < x � bg
(a; b) = fx 2 <ja < x < bg

We will also use the notation ha; bi to denote an interval of any of the abovede�ned forms.Let I be the set of all intervals. Given a set F = E [f�1;+1g, where Eis a �nite subset of <, we call F-interval any element ha; bi of I such that a 2 F
3

and b 2 F . Let F be the set of F-intervals. We recall that the set inclusionrelation is a partial ordering on real intervals, and thus on F-intervals. We callvector any �nite sequence (u1; : : : ; un) of subsets of <. The ith component ofany vector u is denoted by ui. We call interval vector any vector such that everyui 2 I, and F-interval vector any vector such that every ui 2 F . Let V be theset of all F-interval vectors.For every n-ary relation � on <, considered as a subset of <n, the ith pro-jection of �, denoted �i(�) is de�ned as follows:
�i(�) = fxi 2 < j (9x1; : : : ; xi�1; xi+1; : : : ; xn 2 <) such that (x1; : : : ; xn) 2 �g

We call block (resp. F-block) any n-ary relation � on < such that there existsan interval vector (resp an F-interval vector) (u1; : : : ; un) verifying
� = u1 � : : :� un:

Let B be the set of all F-blocks.For the sake of clarity, we will often thereafter denote any F-block as theF-interval vector made of its projections1.
2.2 Approximations
In order to introduce the narrowing function associated with any n-ary relationon < we de�ne the approximation of any subset of < by an F-interval, andextend it to the approximation of any subset of <n by a block.For every relation � on < considered as a subset of <, the approximation of�, denoted approx(�); is the smallest (w.r.t. the inclusion relation) F-intervalcontaining the relation �:The purpose of this de�nition is twofold. On one hand, if F-intervals arede�ned as being
oating point intervals, this de�nition is closely akin to theideas at the basis of relational interval arithmetic and, in the case where � isreduced to a singleton, introduces the approximation of real numbers by
oatingpoint intervals (see [5]). On the other hand, the generalization which allows �to be any relation on < (� is not restricted to be an interval) will be used todeal with non interval-convex relations2. The approx function is then naturallyextended to any n-ary relation on < in the following way:
De�nition 1 For every � � <n, the approximation of �, denoted approx(�) isthe smallest (wrt the inclusion relation) F-block containing �:

The existence of the approximation of any relation is based on the closureof B under intersection. It can also be shown that :
approx(�) = (approx(�1(�)); : : : ; approx(�n(�))):1However, let us mention that B and V are not isomorphic since for any F-interval vectorx = (x1; : : : ; xn), if any of the xi's is the empty set, then x maps to the empty block.2An interval-convex relation, as de�ned in [5], is a relation whose projections are intervals.

4

The principal properties of the approx function are monotonicity and idempo-tence, shown in the two following Lemmas.
Lemma 1 Let � and �0 be two n-ary relations on <. Then,

� � �0 implies approx(�) � approx(�0):
Proof: Since � � �0 and �0 � approx(�0); then � � approx(�0):Thus, by De�nition 1, since approx(�) is the smallest block containing � andapprox(�0) is a block, then approx(�) � approx(�0): 2
Lemma 2 Let � be an n-ary relation on <. Then,

approx(approx(�)) = approx(�)
Proof: Straightforward, since an immediate consequence of De�nition 1 is thatfor any F-block u, approx(u) = u. 2
Here follows another Proposition which establishes some properties of the ap-proximation with respect to union and intersection3:
Property 1 Let �; �0 be two n-ary relations on <. Then,

approx(� [�0) = approx(approx(�) [approx(�0)); (1)
approx(� \ �0) � approx(�) \ approx(�0): (2)

Proof: The left-right inclusion proof is straightforward in both cases4. Herefollows the right-left proof for (1):Since � � � [�0 and �0 � � [�0, then, by Lemma 1,approx(�) � approx(� [�0) and approx(�0) � approx(� [�0),thus, approx(�) [approx(�0) � approx(� [�0), and by Lemma 1 and 2,approx(approx(�)) [approx(�0)) � approx(� [�0). 2
2.3 Narrowing
The de�nition of the narrowing function associated to every n-ary relation of< is the basis of Relational Interval Arithmetic. Informally, given a relation� and an F-block u, the result of the narrowing function of � applied to u isthe smallest F-block containing u \ �. Here follows the de�nition and basicproperties of narrowing functions:

3One can note that B is not closed under set union.4Since � � approx(�) and �0 � approx(�0) implies�[�0 � approx(�)[approx(�0) and �\�0 � approx(�)\approx(�0). Applying Lemma 1 givesthe result

5

De�nition 2 Let � be an n-ary relation on <. The narrowing function of � isthe function �!� ;Fn �! Fn; such that for every F-block u,
�!� (u) = approx(u \ �):

The main properties of the narrowing functions are Contractance (the nar-rowed intervals are smaller than the initial intervals), Correctness (every realsolution lies in the narrowed intervals), Monotonicity (the narrowing preservesthe inclusion) and Idempotence (the narrowed intervals have to be computedbut once), as expressed by the following theorem.
Theorem 1 For every � 2 <n, and every F-blocks u; v,

(1) �!� (u) � u; (Contractance)
(2) u \ � = �!� (u) \ �; (Correctness)
(3) u � v implies �!� (u) � �!� (v); (Monotonicity)
(4) �!� (�!� (u)) = �!� (u): (Idempotence)

Proof: (1) Contractanceu \ � � u, thenapprox(u \ �) � approx(u) (Lemma 1), and�!� (u) � u (since u is an F-block).
(2) CorrectnessLet us show �rst that u \ � � �!� (u) \ �:�!� (u) = approx(u \ �), (De�nition 2),approx(u \ �) � u \ �; (De�nition 1), thus,approx(u \ �)) \ � � u \ �:
Then, we show that u \ � � �!� (u) \ �:approx(u \ �) � u. (Contractance), thus,�!� (u) \ � � u \ �:
(3) MonotonicityThis property is a direct consequence of Lemma 1. In e�ect, we haveu � v, thus u \ � � v \ �, then by Lemma 1,approx(u \ �) � approx(v \ �)
(4) IdempotenceA direct consequence of the Contractance property is that:�!� (�!� (u)) � �!� (u)

6

Thus, we have to show that �!� (�!� (u)) � �!� (u)Since u \ � � approx(u \ �) (De�nition 1), thenu \ � � approx(u \ �) \ �. Thus, by Lemma 1,approx(u \ �) � approx(approx(u \ �) \ �), and �nally�!� (u) � �!� (�!� (u)): 2
We can now use the narrowing of one particular relation to simplify sets ofrelations, as shown in the following section.

3 Applying narrowing to constraint systems
3.1 Constraint systems
Let V be an in�nite countable set of variables representing real numbers, andF = E [f�1;+1g, where E is a �nite subset of <.
De�nition 3 A constraint is an expression of the form �(x1; : : : ; xn), where �is a n-ary relation on <, and every xi is either a variable from V or a constantfrom E.

Choosing < and not F as the domain on which the constraints are de�nedallows us to make a natural link with Prolog, without the various drawbacksexpressed in [5] (use of non-logical variables, modi�cation of the uni�cationalgorithm, etc.).
De�nition 4 A system � is a pair (i; S), where i is a mapping from V [Einto F , and S is a �nite set of constraints.
De�nition 5 A solution � of a constraint system � = (i; S) is a mapping fromV [E into < verifying:

8x 2 E; �(x) = x
8x 2 V; �(x) 2 i(x)

8�(x1; : : : ; xn) 2 S; (�(x1); : : : ; �(xn)) 2 �
It can be noted that a constraint system can also be de�ned as a mere �niteset of constraints, since i can be de�ned as a set of unary relations stating thata variable must lie between two given bounds. However, although simplifyingthe de�nition, this approach complicates the algorithm and is quite far fromthe actual implementation. The purpose of the narrowing algorithm is, given aconstraint system, to compute a �xed point called stable system whose de�nitionfollows:

De�nition 6 A system � = (i; S) is stable i� for every constraint �(x1; : : : ; xn) 2S, if u = (i(x1); : : : ; i(xn)), then �!� (u) = u
7

Algorithm
input: a stable system � = (i; S),a constraint c

S S [fcg; C fcg; i0 = iWhile C 6= ; doChoose any constraint c0 = �(x1; : : : ; xn) from Cu (i0(x1); : : : ; i0(xn))v �!� (u).If any of the vi is empty then stop, the system (i; S [fcg) is inconsistent.For every variable xj in fx1; : : : ; xng DoIf vj 6= i(xj) theni0(xj) vjFor every constraint c00 in S in which xj appears Do C C [fc00g.EndIfEndForC C � fc0gEndWhile
output: inconsistency ora stable system �0 = (i0; S [fcg)

Figure 1: A narrowing algorithm
3.2 A narrowing algorithm
The algorithm which is used to compute stable sets of constraints is basically theone which is used in BNR-Prolog(see [19]), and is quite close to local consistencyalgorithms (see [12, 15, 16]) applied to in�nite bounded domains and n-aryrelations. The incremental version of the algorithm is described in �gure 1.This algorithm veri�es the following properties:

1. The algorithm trivially terminates, since narrowing functions are contrac-tant and the number of computable F-intervals is �nite.
2. The algorithm, as shown in [19] reaches a �xed point which, due to themonotonicity of narrowing functions is unique and does not depend on theorder in which the constraints are chosen.
3. Due to the correctness of narrowing functions, every solution of (i; S[fcg)is a solution of �0.
However, this narrowing procedure, like other local consistency checks isnot strong enough to guarantee, in the general case, the completeness of the

8

algorithm which can compute a stable system �0 = (i0; S [fcg) where S [fcgis inconsistent.
4 Constraints on reals, integers and Booleans
The previous sections de�ne narrowing functions but do not give any indicationson the type of relations they can handle usefully and do not provide any wayto compute them. This is the object of this section. Since we are interestedhere in more practical issues, we will consider F-intervals as being
oating pointintervals, for any given
oating point representation.Interval arithmetic, as presented in [5], generally restricts the de�nition ofthe narrowing function to these relations � such that for every
oating pointvector u, every projection of �\u is an interval vector. These relations are calledinterval convex relations. Here follows the de�nitions for interval-convexity andits natural extension to F-interval convexity.
De�nition 7 A n-ary relation � on < is interval convex (resp. F-interval con-vex) if for every block (resp F-block) u and every i in f1; : : : ; ng, �i(�\u) is aninterval (resp. an F-interval).

When restricted to this case, the equivalent of the approximation function isbased on an \outward rounding" function which associates to any interval I thesmallest
oating point interval J such that I � J . Examples of interval convexrelations are:
add= f(x; y; z) 2 <3; x+ y = zg,
leq= f(x; y) 2 <2; x � yg,
le= f(x; y) 2 <2; x < yg,
eq= f(x; y) 2 <2; x = yg

For example, for any
oating point vector u = (u1; u2; u3) the resulting

oating point vector v = (v1; v2; v3) after applying �!add is given below:

v1 = u1 \ (u3 	 u2),
v2 = u2 \ (u3 	 u1),
v3 = u3 \ (u1 � u2),

Where � and 	 are the regular interval addition and interval substraction5.Similar formulas allow to compute the narrowing functions of the other relations
5For a more detailed de�nition of these functions one can see [17].

9

cited above. Some usual relations are much more di�cult to deal with, forexample multiplication. The natural relational de�nition of multiplication is:
mult = f(x; y; z) 2 <3; z = x� yg:

The mult relation is not interval convex and for every F-block u, the projectionsof mult\u are generally not intervals, but disjunctions of intervals, as it can beveri�ed in the following example cited in [5]:
if u = ([�2; 3]; [�1;+1]; [1; 1]), then�1(mult \ u) = [�2; 3];�2(mult \ u) = [�1;�1=2] [[1=3;+1];�3(mult \ u) = [1; 1])However, as it is suggested in [5], one can express mult as the union of twointerval convex relations noted mult+ and mult�, whose de�nition is given aboveand whose narrowing projections algorithms are precisely presented in [5]:

mult+ = f(x; y; z) 2 <3; x � 0; x� y = zg,
mult� = f(x; y; z) 2 <3; x < 0; x� y = zg.

The solution proposed in [5] and also in [11] is to deal with this union ofinterval-convex relations by choosing one of these sub-relations, and postponethe processing of the other relation by e�ectively creating a Prolog choice point,or any other explicit backtracking procedure. In contrast, making use of thede�nitions proposed above, the computation of the narrowing function on thesame example gives the following result:
��!mult(u) = ([�2; 3]; [�1;+1]; [1; 1])

The aim of the following section is to formally describe how one can computesuch relation decompositions.
4.1 Union and intersection of interval-convex relations
As it will be shown in the next sections, it is crucial to be able to make use of theexpression of any relation in terms of unions and intersections of simpler (i.e.interval convex) relations. In this section, we present two results. The �rst givesa way to compute the union of two relations, and the second expresses conditionsunder which a similar processing can be done with respect to intersection. Herefollows the decomposition Property:
Property 2 (Decomposition) Let � and �0 be two n-ary relations on <. Then,for every block u:

���!� [�0(u) = approx(�!� (u) [�!� 0(u)) (3)
10

Proof:
���!� [�0(u) = approx(u \ (� [�0))

= approx((u \ �) [(u \ �0)
= approx(approx(u \ �) [approx(u \ �0)); (Property 1)
= approx(�!� (u) [�!�0 (u))

2
With respect to intersection, a similar reasoning leads tothe following prop-erty (the equality does not hold in the general case) :

���!� \ �0(u) � �!� (u) \ �!�0 (u) (4)
It is often mentioned that to deal with relations which are expressed in termsof intersection of interval-convex relations, one can decompose them and applythe narrowing algorithm. This way of doing does not guarantee to compute thenarrowing of the intersection in the general case, as it is shown in the examplebelow. Consider the relation � = �1 \ �2, where:

�1 = f(x; y) 2 <2 j x = yg and �2 = f(x; y) 2 <2 j x = �yg
Let us now consider u = ([�1; 1]; [�1; 1]). It is clear that �!� (u) = ([0; 0]; [0; 0]),but applying the narrowing algorithm on the system S = fx 2 [�1; 1]; y 2[�1; 1]; x = y; x = �yg, we are not able to narrow any of the two intervals.However, in an interesting number of special cases, this way of computingthe intersection is correct, as it is shown in the following. We �rst introduce thenotion of i-dependency.
De�nition 8 (i-dependancy) A n-ary relation � on < is i-dependant (i 2f1; : : : ; ng), i�, 8(x1; : : : ; xn) 2 <n; 8y 2 <;

(x1; : : : ; xn) 2 �() (x1; : : : ; xi�1; y; xi+1; : : : ; xn) 2 �
The negation of i-dependancy is called i-independancy. An immediate conse-quence of this de�nition is the following property we give without proof.
Property 3 Let � be an n-ary relation on <, then, for all i in f1; : : : ; ng, thetwo following propositions are equivalent:

1. � is i-dependant
2. there exists a block u such that �i(� \ u) 6= ; and �i(� \ u) 6= �i(u).
Then we show the following theorem (the proof is given in Appendix):

11

Theorem 2 (Composition) Let � and �0 be two F-interval convex, n-ary re-lations on <. If there exists at most one i in f1; : : : ; ng such that � and �0 arei-dependant then for every F-Block u:
���!� \ �0(u) = �!� (�!�0 (u)) \ �!�0 (�!� (u))

A simple example of application of this theorem is the computation of thefollowing relation6:
� = f(x; y) 2 <2 j x = yg \ f(x; y) 2 <2 j x � 0g

Let us call �1 = f(x; y) 2 <2 j x = yg and �2 = f(x; y) 2 <2 j x � 0g: If weconsider u = ([�2; 1]; [�1; 2]) then
�!�1 (u) = ([�1; 1]; [�1; 1]);�!�2 (�!�1 (u)) = ([0; 1]; [�1; 1]);�!�2 (u) = ([0; 1]; [�1; 2]);�!�1 (�!�2 (u)) = ([0; 1]; [0; 1]);�!�2 (�!�1 (u)) \ �!�1 (�!�2 (u)) = ([0; 1]; [0; 1])

It is easy, in this case, to verify that �!� (u) = ([0; 1]; [0; 1])
4.2 Integer constraints and disequality
The e�cient processing of constraints on �nite domains, and thus on boundedintegers is one of the most important functionalities required in CLP to solvemany constraint problems. A narrowing algorithm for integer and disequalityrelations is suggested by John Cleary in [5], with the conclusion that the appli-cation of interval narrowing to these fundamentaly non interval-convex relationsis probably worthless due to the great number of created choice points, and theweakness of the narrowing applied to disequality.However, the narrowing approach presented here computes integer con-straints quite e�ciently. Informally, the e�ect of narrowing on variables that areconstrained to represent integer values is to reduce their domain to closed inter-vals whose bounds are integers. Here follows the description of the algorithmsto compute the narrowing function for integer (denoted by int). If u = ha; bi isan F-interval, then: �!int(u) = [da0e; bb0c]

6this is, in fact one half of the relation \absolute value\,
abs = (f(x; y) 2 <2 j x � 0g \ f(x; y) 2 <2 j x = yg) [(f(x; y) 2 <2 j x < 0g \ f(x; y) 2 <2 j x = �yg)

12

where da0e is the smallest integer greater or equal than a0, bb0c is the greatestinteger smaller or equal than b0, anda0 = a+ 1; b0 = b if u = (a; b] and a and b are integers,a0 = a; b0 = b� 1 if u = [a; b) and a and b are integers,a0 = a+ 1; b0 = b� 1 if u = (a; b) and a and b are integers,a0 = a; b0 = b if u = ha; bi and u is not of one of the above forms.In contrast with the continuous domains, where the approximation of realsby intervals makes the disequality relation practically useless, disequations areof great importance in the case of �nite domains as it has been shown on manyexamples. The disequality relation is given by neq= f(x; y) 2 <2 j x 6= yg.It can also be expressed as the union of two already de�ned interval convexrelations as follows:
neq = f(x; y) 2 <2 j x < yg [f(x; y) 2 <2 j x > yg

Thus, the Theorem 2 can be applied to compute �!neq. Practically, let usconsider two variables in the relation neq. If one of their domains is reduced toone value which is a closed bound of the other domain, then this second domainis narrowed by removing that value. For example:
x 2 (0; 2:12]; integer(x); x 6= 2 =) x = 1;
x 2 (0; 3:99]; integer(x); x 6= 2 =) x 2 [1; 3]:

4.3 Boolean constraints
The introduction of Boolean constraints into this framework is done by consid-ering Boolean variables as integers whose possible values are taken in [0; 1]. TheBoolean relations are de�ned as follows:

and = min = f(x; y; z) 2 <3;min(x; y) = zg
or = max = f(x; y; z) 2 <3;max(x; y) = zg
not = f(x; y) 2 <3; y = 1� xg

The design of an algorithm to compute min and max is not trivial. A caseanalysis based on the comparisons of the six involved bounds leads to the studyof ninety di�erent cases. However, we can apply Property 2 and Theorem 2since min and max can be expressed in the following way:
min = �f(x; y; z) 2 <3; x � yg \ f(x; y; z) 2 <3; z = xg� [�f(x; y; z) 2 <3; x > yg \ f(x; y; z) 2 <3; z = yg�
max = �f(x; y; z) 2 <3; x � yg \ f(x; y; z) 2 <3; z = xg� [�f(x; y; z) 2 <3; x < yg \ f(x; y; z) 2 <3; z = yg�

13

The narrowing algorithm applied to such de�ned Boolean constraints, whenassociated with Boolean enumeration, is comparable to local consistency algo-rithms based on the Davis and Putnam procedure (see for example [14]).Basic examples of Boolean constraint narrowing are:
x _ 1 = y =) y = 1
x _ 0 = 1 =) x = 1
x ^ y = 1 =) x = 1; y = 1
x _ y = 0 =) x = 0; y = 0

Moreover, based on the fact that Booleans are de�ned as numbers, one canexpress relations between Boolean variables by using numerical relations. Forexample, to state that in a sequence (x1; : : : ; xn) of Boolean values, at leasta of them and at most b of them must be true, one can write the followingconstraint7: a � x1 + : : :+ xn � b
Finally, here are some other usual Boolean functions8:

a) b : a � b;
if a then b else c : (2� a� b)� (1� c+ a) = 0;

a xor b : a 6= b:
4.4 Extended numerical relations
One other important feature missing in the standard CLP systems is the pos-sibility to use comparison relations in Boolean constraints and thus to expressconstraints like: given three numbers x, y and z, if x � y then x � z � y else(x � z) _ (z � y), which can be expressed as9:

(:(x � y)) _ (x � z � y)) ^ ((x � y) _ ((x � z) _ (z � y))) = 1;
or more simply: (z � x) + (z � y) = (x � y) + 1
The processing of such constraints is useful as soon as one considers problemsmixing numbers and Boolean values. One way to introduce these constraints isto modify the de�nition of such relations as equality, inequality and disequalityby considering ternary relations involving one Boolean parameter. Here are

7This is the Boolean expression of the cardinality operator proposed in [24].8Assuming that � and 6= are ternary relations whose third parameter is a Boolean value,as it will be developped in the next sections.9See previous note.

14

some of these relations:
eq = �f(x; y; z) 2 <3; x = yg \ f(x; y; z) 2 <3; z = 1g� [�f(x; y; z) 2 <3; x 6= yg \ f(x; y; z) 2 <3; z = 0g�
geq = �f(x; y; z) 2 <3; x � yg \ f(x; y; z) 2 <3; z = 1g� [�f(x; y; z) 2 <3; x < yg \ f(x; y; z) 2 <3; z = 0g�

Here again, we can apply Property 2 and Theorem 2 to compute correctlythis type of constraints.
5 Examples and computational results.
In this section, we present some examples of the possible use of the di�erentconstraints described above, and we give some computational results, basedon a �rst prototype of a language called CLP(BNR), which is an extension ofBNR-Prolog (see [19]) which includes the processing of the integer and Booleanconstraints described in the �rst part of the paper. The syntax is a supersetof the standard Edinburgh Prolog syntax and we will assume the reader isfamiliar with the notions of variables, constants, terms, lists, rules, programs,queries and their usual notations. The additional constraints include unarytype constraints, Boolean relations, and ternary numerical relations whose thirdparameter is a Boolean. A functional notation of the constraints is syntacticalyprovided to simplify the writing of programs. A more detailed presentation ofCLP(BNR)from the user point of view can be found in [20].From the implementation point of view, this prototype consists mainly ofa BNR-Prolog top-level implementation of interval arithmetic with speci�c as-sembler subroutines to compute basic narrowing functions. Among other im-plementation imperfections, there is no speci�c way to compute inequalitiesand the actual processing of integers, and thus Booleans, is based on the gen-eral BNR-Prolog
oating-point representation. This explains why the followingcomputational results are much slower than what we could expect from a �nalintegrated implementation of the system. These results are mainly given here toprovide a general idea on performances and experimental complexity analysis.The results have been computed on a standard Macintosh II (2 Mips). Forthe problems presented below, we have separated the set-up part, where Prologbehaves like a macro-processor and builds constraint systems, and the enumer-ation part, where the actual solutions are computed. Most of the time, theresult tables indicate the set-up time and the execution times in seconds andthe number of necessary backtrackings to �nd the �rst solution and all solutions(including the proof that they are all computed). However, on some examplessome of these results have been omited for practical reasons.We end this preamble by saying a few words on enumeration. As it is well-known, local consistency algorithms on �nite domains are complete when they

15

are used together with enumeration procedures which compute non determinis-tically the actual solutions of the considered systems. In fact, a massive part ofthe interest of such approaches relies on the e�ciency of the enumeration, andthus on a number of particular heuristics. Among these, the most used is the"�rst-fail principle" which consists in enumerating �rst the more constrainedvariables (the variables whose domain is the smallest and/or the variables ap-pearing in the greatest number of constraints). As the processing of disequali-ties, as described here, is weaker than the mere deletion of the prohibited valuesfrom the corresponding domains10 and due to our top-level implementation, it ismore di�cult in our case to select the more constrained variables. We have thusimplemented an approximation of the �rst-fail principle which consider �rst thevariables with the smallest di�erence between their upper and lower bounds. Amore sophisticated implementation could perfectly involve a domain bit-map inthe integer case and apply this heuristic more accurately.
5.1 Linear arithmetic on integers
Even though the originality of the system presented here is ita ability to tackleconstraints which do not �t in the usual speci�c integer linear case, we justgive here some benchmarks for linear problems to give a general idea of itsperformances. As it has been stated before, it is also clear that our aim hereis not to compete, from the e�ciency point of view, with specialized systems,like CHIP, whose implementation has been particularly studied (see for example[1]). The �rst example with which we propose to illustrate integer constraintsis the well-known cryptarithmetic problem DONALD +GERALD = ROBERT,whose purpose is to give a di�erent value, taken between 0 and 9 to each letter,in order to verify the corresponding additions. The second one is the too famousN queens problem, which, totally based on integer disequalities, is certainly notone of our best cases. Here follows the computation results for these problems:

Problem Set-up time First solution All solutionsBack Enum time Back Enum timeDONALD 1.75 s 2 0.38 s 8 0.90 sec12 Queens 6.73 s 58 26.26 s n/a n/a14 Queens 10.05 s 49 24.73 s n/a n/a16 Queens 14.33 s 50 26.76 s n/a n/a
Due to the very big number of acceptable solutions to the N-Queens problem,as soon as N � 12, the computation of all of them is quite unrealistic11.

10The computed intervals are only narrowed when the value is also one of the interval'sbounds.11To give an idea, the algorithm proposed in [14] �nds the 14200 solutions for N = 12 in4:30 hours.

16

5.2 Non-linear arithmetic on integers
As a �rst example of non-linear constraints on integers, we propose the followingproblem. Find n integers x1; : : : ; xn,1 � xi � n, verifying the two followingconditions: nX

i=1 xi =
nX

i=1 i ; nY
i=1xi =

nY
i=1 i:

Any permutation of (1; : : : ; n) is an obvious solution, but as n is growing,there are other solutions. To avoid the computation of symmetrical solutions,we impose the following constraint: x1 � x2 � : : : ;� xn. The �rst n for whichthere is more than one solution is 9. Here follow the results for this program:
N Set-up First solution All solutions Nb SolBack Enum time Back Enum time9 0.98 s 115 6.16 s 392 19.73 s 210 1.11 s 339 17.61 s 1085 55.83 s 611 1.25 s 1025 53.35 s 3179 163.80 s 612 1.31 s 1423 77.83 s 9323 487.30 s 22

5.2.1 Pythagorean triples and other Diophantine equations
Two other interesting problems are the following ones:

1. Find three positive integers x; y; z such that:
x2 + y2 = z2 (5)

2. �nd four positive integer x; y; w; z which are solutions of the equation:
x2 + y2 + w2 = z2; (6)

The CLP(BNR) program to solve these two equations, assuming the consid-ered integers are bounded, is straightforward. In the �rst case (Equation 5), itis well known that the solutions are in�nitely many and can be generated bythe following equations:
x = u2 � v2; y = 2uv; z = u2 + v2;

where u and v are any integers whatsoever satisfying the conditions that u >v > 0; (u; v) = 1; and one of u and v is even (see [22]). The second problem ismore interesting since, as far as we know, the in�nitely many solutions cannotbe generated with any other equations. Figure 2 shows the program to �nd allintegers (bounded by a positive integer n) verifying Equation 6. We can assume,without loss of generality that: x � y � w. Here follow the computation resultsfor these two problems:

17

diophantine(N):-[X,Y,Z,W]:integral(1,N),X**2+Y**2+W**2==Z**2,W >= Y, Y >= X,enumerate([X,Y,W]).
Figure 2: Program for x2 + y2 + w2 = z2

N Equation 5 Equation 6Enum time Back. Nb Sol. Enum time Back. Nb Sol.20 0.65 s 13 6 3.36 s 89 2250 2.78 s 37 20 30.00 s 564 141100 9.23 s 87 52 200.60 s 2299 573200 31.90 s 192 127 n/a n/a n/a500 179.96 s 559 386 n/a n/a n/a

5.3 Boolean constraints
We have tested our prototype on classical Boolean benchmarks. It should benoted that we have used, as often as possible, the addition on boolean vari-ables to express cardinality constraints. Queens is the Boolean version of theN-Queens problem previously described. Schur refers to the Schur Lemma:Considering the N �rst integers, if one wants to place them in three boxes insuch a way that, for every box, and for every integers a and b, a and 2a are notin the same box, and if a and b are in the same box, then a+ b is not. Pigeonis the pigeon-hole problem, where n pigeons have to be placed in p holes, withthe condition that only one pigeon can be placed in one hole. Here follows thecomputational results for these benchmarks:

Problem Set-up First solution All solutions Nb SolBack Enum Back Enumqueens 8 1.93 s 21 0.94 s 391 19.56 s 92Schur 13 2.45 s 9 0.46 s 179 6.76 s 18Schur 14 2.91 s - - 179 6.88 s 0pigeons 7/7 0.84 s 0 0.93 s 5039 146.65 s 5040pigeons 8/7 0.98 s - - 5039 105.88 s 0
If we refer, for example to recent benchmarks provided in ([14]), the e�-ciency of our prototype is nearly equivalent or slightly better. Considering the

18

strong implementation restrictions cited above, we thus can hope our system willprovide, in addition to, and with the help of numerical constraint processing, afairly e�cient Boolean solver.
5.4 Extended numerical relations
An example of the possible use of these relations is cited both in [6] and [23] asthe \magic series" problem. The purpose of this problem is to �nd a sequence ofn non-negative integers (x0; : : : ; xn�1) such that for every i 2 f0; : : : ; n� 1g; xiis the number of occurences of the integer i in the sequence. In other words, forevery i 2 f0; : : : ; n� 1g,

xi = n�1X
j=0(xj = i);

where the value of (x = y) is 1 if (x = y) is true and 0 if (x 6= y) is true.Moreover, it can be shown that the two following properties are true12:
n�1X
i=0 xi = n; (7)
n�1X
i=0 i xi = n: (8)

We have programmed this problem in CLP(BNR), without and with theadditional constraints. Figure 3 shows the program without any additionalredundant constraints and here follows the computation results for this problem:

N Set-up Without add. cstrt With Eq. 7 With Eq. 7 & 8back. enum back. enum back. enum5 1.60 s 16 17.33 s 5 0.40 s 2 0.20 s10 6.48 s 139 17.33 s 15 1.96 s 8 1.00 s15 14.43 s 466 112.56 s 24 8.85 s 11 3.66 s20 25.66 s n/a n/a 35 34.68 s 18 11.03 s25 40.06 s n/a n/a 44 108.51 s 21 24.66 s30 57.71 s n/a n/a 55 281.16 s 28 51.03 s

12in e�ect computing the total number of occurences of numbers gives Equation 7, whilethe study of the sum of the elements of the sequence gives Equation 8

19

magic(N,L):-length(L,N),L : integer(0,_),constraints(L,L,0),enumerate(L).
constraints(L,[],N). constraints(L,[X|Xs],I):-sum(L,I,X),J is I+1,constraints(L,Xs,J).
sum([],I,0). sum([X|Xs],I,S):-S == (X==I) + S1sum(Xs,I,S1).

Figure 3: Program for the magic series problem
5.5 Scheduling with disjunctive constraints
This type of constraints can also be used to deal with scheduling problems withresource allocation. Let us consider any scheduling problem involving a set oftasks T = ft1; : : : ; tng. To each task ti is associated a pair (bi; di), where bi isthe beginning and di is the duration of task ti. The values for beginnings anddurations are taken in a �nite set of time segments13. To this set of tasks isassociated a set of precedence and distance constraints14. Let us now introducea set of resources and consider, amongst others, two tasks, t1 and t2 which sharethe same resource. Then the following constraint expresses that tasks t1 and t2cannot be executed concurrently:

(b1 + d1 � b2) _ (b2 + d2 � b1) = 1 (9)
One way to treat these constraints, as described in [23], is to use the constraintsas choice points and to �nd non deterministically an ordering of the tasks whichsatis�es the other precedence and distance constraints. In our system, we canmake use of the extended numerical relations to express directly the constraint9 as shown in the following CLP(BNR) rule:

13Although the set of possible segment values is �nite, one is not constrained to use a�nite domain representation for them, as solutions can be found using narrowing, without anyenumeration step.14Precedence constraints are of the type bi + di � bj , meaning that task ti has to becompleted before the beginning of task tj . Distance constraints are any constraints which canbe represented as precedence constraints by introducing new tasks. An example of distanceconstraint is: task ti must begin at least n segments after task tj has been completed.
20

disj_constraint(B1,D1,B2,D2):-(B1+D1 =< B2) + (B2+D2 =< B1) == 1.
The addition, as stated in the previous sections, is used to express the factthat the disjunction is exclusive. After having set deterministically the wholeconstraint system, the system can �nd a solution thanks to boolean enumeration.It has to be noted that as soon as either a boolean or a numerical value is known,the computation of the new stable system involves narrowing of other booleanand numerical values, possibly pruning dramatically the search tree.We have applied this technique to the bridge problem, cited in [23]. Thisproblem involves fourty six tasks, and more than six hundred constraints. Inorder to compute the solution which guarantees the minimum cost, we haveimplemented on top of the system a control predicate which computes a branchand bound procedure. Here are the computational results for this problem:

Bridge Set-up time Nb of back. Enum. timeFirst solution (cost 110) 12.03 s 0 1.61 sBest solution (cost 104) - 4 5.28 sProof of optimality - 149 28.66 s
6 Conclusion
We have shown in this paper that interval arithmetic is a good candidate forconstraint solving in a CLP language including constraints on real numbers,integers and Booleans. This approach provides a uni�ed framework in whichall these di�erent types of constraints can be freely mixed. This allows theprogrammer to deal with problems where the combinatorial part is coded withinteger constraints and involving real coe�cients, to include numerical relationsin Boolean systems, and to improve the expressiveness of Boolean constraints bymaking use of addition, multiplication and numerical relations. The expressivepower of such a language is thus an extension of the possibilities of other CLPsystems, with the two important exceptions of constraints on lists (Prolog III,see [6]) and linear resolution on rational/reals numbers where Prolog III andCLP(<) propose speci�c and complete algorithms based on Gaussian elimina-tion and Simplex-like methods. The range of possible applications remains closeto what has been already tackled with CLP methods (planning, scheduling, con-�guration, resource allocation, circuit design and testing, engineering-orientedKBS, etc.), while strongly tightening the links between the combinatorial and(generally non-linear) numerical aspects of the kind of problems cited above. Fu-ture work concerns implementation improvements, development of applicationsfor \real-life problems", and design of eventual communications with completealgorithms for special cases such as rational linear programming.

21

Aknowledgements
We would like to express our gratitude to Peter Cashin who gave the authors theopportunity to collaborate by supporting a one year visit of one of them to theBNR Software Engineering Center. We would also thank Alain Colmerauer whohas suggested a number of improvements and simpli�cations in the theoreticalframework and Rick Workman and Andr�e Vellino for their careful reading andtheir comments on previous versions of this paper. We also thanks Maarten VanEmden, Henk Vandecasteele, Martin Nilson and Olivier Lhomme for interestingdiscussions and email correspondance on the matter presented here.
References
[1] A. Aggoun and N. Beldiceanu. "Overview of the CHIP compiler system".In Constraint Logic Programming: Selected Research, F. Benhamou and A.Colmerauer (eds), MIT Press, 1992 (to appear). This paper is a modi�edversion of the paper in Proceedings of ICLP '91, MIT Press, p 775{789, Paris1991.
[2] A. Aiba, K. Sakai, Y. Sato, D. J. Hawley, and R. Hasegawa. \Constraintlogic programming language CAL". In Proceedings of the International Con-ference on Fifth Generation Computer Systems (FGCS-88), ICOT, Tokyo,pages 263-276, December 1988.
[3] F. Benhamou, \Boolean Algorithms in Prolog III", in Constraint Logic Pro-gramming: Selected Research, F. Benhamou and A. Colmerauer (eds), MITPress, 1992 (to appear).
[4] F. Benhamou and A. Colmerauer (eds), Constraint Logic Programming: Se-lected Research, MIT Press, 1992 (to appear).
[5] J. G. Cleary, \Logical Arithmetic", Future Computing Systems, Vol 2,No 2,p 125{149, 1987.
[6] A. Colmerauer, \An introduction to Prolog III", in Communications of theACM, 33(7):69, July 1990.
[7] A. Colmerauer, \Naive Resolution of Non-linear Constraints", Technical Re-port, GIA, Marseille, France, 1992. To appear in Constraint Logic Program-ming: Selected Research, F. Benhamou and A. Colmerauer (eds), MIT Press,1992
[8] M. Dincbas, H. Simonis and P. Van Hentenryck, \Extending equation solv-ing and constraints handling in logic programming", in Proc. ColloquiumCREAS MCC, Austin, Texas, May 1987.

22

[9] J. Ja�ar and J.L. Lassez, \Constraint Logic Programming", in Proc. POPL,ACM, 1987.
[10] Joxan Ja�ar, Spiro Michaylov, P. J. Stuckey and R. H. C. Yap, \TheCLP(<) Language and System", in ACM Transactions on ProgrammingLanguages and Systems, vol14, no 3, July 1992, Pages 339{395.
[11] J.H.M. Lee and M.H. van Emden, \Adapting CLP(<) to Floating PointArithmetic", in Proceedings of the Fifth Generation Computer Systems Con-ference, Tokyo, Japan, 1992
[12] A.K. Mackworth, \Consistency in Networks of Relations", in Arti�cial In-telligence 8, p 99-118, 1977.
[13] A.K. Mackworth, J.A. Mulder and W.S. Havens,\Hierarchical Arc Consis-tency: Exploiting Structured Domains in Constraint Satisfaction Problems",in Computational Intelligence 1, p 118-126, 1985.
[14] J.L. Massat, \Using Local Consistency Techniques to Solve Boolean Con-straints", to appear in Constraint Logic Programming: Selected Research, F.Benhamou and A. Colmerauer (eds), MIT Press, 1992.
[15] U. Montanari, \Networks of Constraints: Fundamental Properties and Ap-plication to Picture Processing", in Information Science, vol 7, 1992.
[16] U. Montanari and F. Rossi,\Finite Domain Constraint Solving and Con-straint Logic Programming", to appear in Constraint Logic Programming:Selected Research, F. Benhamou and A. Colmerauer (eds), MIT Press, 1992.
[17] R.E. Moore, \Interval Analysis". Prentice Hall, 1966.
[18] W. Older and A. Vellino, \Extending Prolog with Constraint Arithmeticon Real Intervals",in Proceedings of the Canadian Conference on Electricaland Computer Engineering, 1990.
[19] W. Older and A. Vellino, \Constraint Arithmetic on Real Intervals",toappear in Constraint Logic Programming: Selected Research, F. Benhamouand A. Colmerauer (eds), MIT Press, 1992.
[20] W. Older and F. Benhamou, Programming in CLP(BNR), BNR Researchreport, 1993.
[21] G. Sidebottom and W. Havens, \Hierarchical Arc Consistency Applied toNumeric Processing in Constraint Logic Programming", Technical ReportCSS-IS TR 91-06, Simon Fraser University, Burnaby, Canada, 1991. Toappear in Computational Intelligence 8(4), Blackwell Publishers, 1992.
[22] H.M. Stark, \An Introduction to Number Theory",MIT Press, Cambridge,1978.

23

[23] P. Van Hentenryck, \Constraint Satisfaction in Logic Programming", MITPress, Cambridge, 1989.
[24] P. Van Hentenryck and Yves Deville\The Cardinality Operator: A newLogical Connective for Constraint Logic Programming", to appear in Con-straint Logic Programming: Selected Research, F. Benhamou and A. Colmer-auer (eds), MIT Press, 1992. A preliminary version is also in Proceedings ofICLP '91, MIT Press, p 745{759, Paris 1991.

24

Appendix: Composition Theorem
Theorem 3 (Composition) Let � and �0 be two F-interval convex, n-ary re-lations on <. If there exists at most one i in f1; : : : ; ng such that � and �0 arei-dependant then we have the two following properties:

1. � \ �0 is F-interval convex
2. for every F-Block u, ���!� \ �0(u) = �!� (�!�0 (u)) \ �!�0 (�!� (u))
We �rst give without proofs a certain number of technical Lemmas:

Lemma 3 Let � be an n-ary relation on <, then for every i in f1; : : : ; ng,
�i(approx(�)) = approx(�i(�))

Lemma 4 Let � and �0 be two n-ary relations on <, then for every i in f1; : : : ; ng,if � and �0 are both i-independant, then � \ �0 is i-independant.
Lemma 5 Let u and v be two F-blocks. If u \ v 6= ; then

8i 2 f1; : : : ; ng; �i(u \ v) = �i(u) \ �i(v):
Lemma 6 Let � be an n-ary relation on < and u a F-block, then

approx(� \ u) � u
Lemma 7 Let � and �0 be two n-ary relations on <,u a F-block. Then the twofollowing propositions are true:

1. �0 \ approx(� \ u) � approx(� \ u) \ approx(�0 \ u)
2. �!� (�!�0 (u)) \ �!�0 (�!� (u)) � �!�0 (u) \ �!� (u)
We �nally establish the proof of the Composition theorem:

Proof: The proof for the case where there is no common i-dependency is atrivial specialization of the proof for the general case. We can thus considerwithout lack of generality that � and �0 are both 1-dependant and that thereexists p; p0 2 f2; : : : ; ng such that:� is i-independant for all i 2 fp+ 1; p0g;�0 is j-independant for all j 2 fp0 + 1; ng.
(A) � \ �0 \ u = ;.
By de�nition of the approximation, we have:

���!� \ �0(u) = ;
25

By Lemma 7 (2) it is su�cient to show that �!� (u) \ �!�0 (u) = ;
Let us suppose that �1(�!� (u) \ �!�0 (u)) 6= ;, then
�1(�!� (u)) \ �1(�!�0 (u)) 6= ;, (Lemma 5)
Let x1 be an element of �1(�!� (u)) \ �1(�!�0 (u)).Since � and �0 are F-interval convex (Lemma 6),

9X 2 � \ u j X = (x1; x2; : : : ; xp; xp+1; : : : ; xp0 ; xp0+1; : : : ; xn)9X 0 2 �0 \ u j X 0 = (x1; x02; : : : ; x0p; x0p+1; : : : ; x0p0 ; x0p0+1; : : : ; x0n)
Let Y = (x1; x02; : : : ; x0p; x0p+1; : : : ; x0p0 ; xp0+1; : : : ; xn)Since X 2 � and � is i-independant for all i 2 f2; : : : ; p0g; Y 2 �, (De�nition 8)SinceX 0 2 �0 and �0 is i-independant for all i 2 fp0; : : : ; ng; Y 2 �0, (De�nition 8)Therefore:

8x2�1(�!� (u)) \ �1(�!�0 (u))9Y 2 (�0 \ � \ u) j �1(Y) = x
Which is in contradiction with the fact that � \ �0 \ u = ; and ends the prooffor this case
(B) � \ �0 \ u 6= ;.
Let us �rst remark that two F-blocks are equals i� all their projections areequals.
(I) First case: Both relations are i-dependant (i = 1).

Since the proof of the left-right inclusion is trivial, and applying Lemma 7(2), it is su�cient to show that
�i(�!� (u) \ �!�0 (u)) � �i(���!� \ �0(u))

Since �!� (u) \ �!�0 (u) 6= ;; and applying Lemma 5 we have:
�i(�!� (u) \ �!�0 (u)) = �i(�!� (u)) \ �i(�!�0 (u))
Let x be an element of �i(�!� (u)) \ �i(�!�0 (u)), then

9X 2 �!� (u) j X = (x; x2; : : : ; xp; xp+1; : : : ; xn);
9X 0 2 �!� (u) j X 0 = (x; x02; : : : ; x0p; x0p+1; : : : ; x0n)

Since for all j 2 f2; : : : ; pg; � is j-independant andfor all k 2 fp+ 1; : : : ; ng; �0 is k-independantand thus:
X 00 = (x; x2; : : : ; xp; x0p+1; : : : ; x0n) 2 � \ �0 \ u

The intersection of two F-intervals being an F-interval, this ends the proof ofboth properties for this case.
26

(I) Second case: Both relations are i-independant (i 2 f2; : : : ; pg)
�i(���!� \ �0(u)) = �i(approx(� \ �0 \ u)), (De�nition 2)= approx(�i(� \ �0 \ u)), (Lemma 3)= approx(�i(u)), (Lemma 4)= ui.
Applying Lemma 5, since � \ �0 \ u 6= ;, we have
�i(�!� (�!�0 (u)) \ �!�0 (�!� (u))) = �i(�!� (�!�0 (u))) \ �!�0 (�!� (u)),We have also:
�i(�!� (�!�0 (u)))= �i(approx(� \ approx(�0 \ u))), (De�nition 2)= approx(�i(� \ approx(�0 \ u))), (Lemma 3)= approx(�i(approx(�0 \ u))), (� is i-independant)= approx(approx(�i(�0 \ u))), (Lemma 3)= approx(�i(�0 \ u)), (Idempotence of approximation)= approx(�i(u)), (�0 is i-independant)= ui.

The same reasoning leads to �i(�!�0 (�!� (u))) = ui, Since ui is an F-interval, thisends the proof of both properties for this case.
(III) Third case: � is i-independant, �0 is i-dependant (i 2 fp+1; : : : ; p0g).
From De�nition 2 and Lemma 3, it comes:

�i(���!� \ �0(u)) = approx(�i(� \ �0 \ u))
As shown in the previous part, we have also:
�i(�!� (�!�0 (u)) \ �!�0 (�!� (u))) = approx(�i(� \ �!�0 (u))) \ approx(�i(�0 \ �!� (u)));
On the other hand,
approx(�i(� \ �!�0 (u)))= approx(�i(approx(�0 \ u))), (� is i-independant and Prop 3)= approx(�i(�0 \ u)), (Lemma 3 and Idempotence of approximation)

Since approx(�i(�0 \ �!� (u))) � approx(�i(�0 \ u)); (Lemma 6),
�i(�!� (�!�0 (u)) \ �!�0 (�!� (u))) = approx(�i(�0 \ �!� (u)))

It remains to establish the following equality:
approx(�i(� \ �0 \ u)) = approx(�i(�0 \ �!� (u)))

27

which is true if �i(� \ �0 \ u) = �i(�0 \ �!� (u))
The left-right inclusion is straightforward.Let x 2 �i(�0 \ �!� (u)): Then
9X 2 �0\�!� (u) j X = (x1; x2; : : : ; xp; xp+1; : : : ; xi� 1; x; xi+ 1; : : : ; xp0 ; xp0+1; : : : ; xn)
Since �0 \ �!� (u) � �!� (u) \ �!�0 (u) (Lemma 7), and applying case I, we have:
9X 0 2 (�0\�\u) j X 0 = (x1; x02; : : : ; x0p; x0p+1; : : : ; x0i� 1; x0; xi0 + 1; : : : ; x0p0 ; x0p0+1; : : : ; x0n)
Since X 0 2 � and � is i-independant for all i 2 f2; : : : ; p0g;Y = (x1; x2; : : : ; xp; xp+1; : : : ; xi� 1; x; xi+ 1; : : : ; xp0 ; x0p0+1; : : : ; x0n) 2 �Since X 2 �0 and �0 is i-independant for all i 2 fp0; : : : ; ng; Y 2 �0.Therefore: 8x 2 �i(�0 \ �!� (u))9Y 2 (�0 \ � \ u) j �i(Y) = x
Furthermore, since �0 is F-interval convex, �i(�0 \ �!� (u)) is an F-interval.A symmetric reasonning handles the case where i 2 fp0+1; : : : ; ng and concludesthe proof of the theorem. 2

28

