
Extending Prolog with Constraint Arithmetic
on Real Intervals �

William Older
Andr�e Vellino

Computing Research Laboratory
Bell-Northern Research
P.O. Box 3511, Station C
K1Y 4H7, Ottawa, Ontario

Abstract
Prolog can be extended by a system of constraints on closed intervals toperform declarative relational arithmetic. Imposing constraints on an intervalcan narrow its range and propagate the narrowing to other intervals relatedto it by constraint equations or inequalities. Relational interval arithmeticcan be used to contain oating point errors and, when combined with Pro-log backtracking, to obtain numeric solutions to linear and non-linear ratio-nal constraint satisfaction problems over the reals (e.g. n-degree polynomialequations). This technique di�ers from other constraint logic programming(CLP) systems like CLP(<) or Prolog-III in that it does not do any symbolicprocessing.

1 Introduction
In most programming languages arithmetic operations are performed by a functional
evaluation mechanism. This is also true for logic programming languages such as
Prolog even though such mechanisms are ill-suited to its generally relational nature.
Arithmetic in Prolog is essentially no di�erent from arithmetic in Fortran.

�Special thanks to John Cleary for inspiring our work on interval arithmetic. This work wouldnot have been possible without the cooperation of everyone in the the Logic Programming Groupof the BNR Computing Research Laboratory. The authors would also like to thank Rick Brown,John Chinneck and Gerald Karam from Carleton University for their suggestions on BNR Prologinterval arithmetic as well as Lewis Baxter and Dick Peacocke at BNR for their comments onearlier drafts of this paper.

1

The functional nature of Prolog arithmetic implies that arithmetic expressions
will not, in general, commute with one another, e.g. Y is 2 * Z, X is Y + B is
not, in general, equivalent to X is Y + B, Y is 2 * Z. Since \," (comma) is inter-
preted in Prolog as the logical \and" relation, this non-commutativity of arithmetic
operations is a major weakness in the logical structure of the Prolog language.

The above problems apply even to integer arithmetic; when oating point arith-
metic is considered there is an additional (and familiar) problem. Because of the
representation limitations of oating point arithmetic, real quantities are not gen-
erally exactly representable in the internal binary formats, and rounding errors in
the basic arithmetic operations cause the results to di�er from those of rational
arithmetic. As a result, oating point arithmetic no longer satis�es the axioms for
real numbers, and one observes logical anomalies such as the failure of the equalities
1.21 == 1.1 * 1.1 and (X + Y) + Z == X + (Y + Z) for some X, Y and Z. (==
is the Prolog arithmetic equality operator.)

However small these errors may be, numerically speaking, the result is that
the symbolic manipulation of expressions according to the algebraic axioms of real
arithmetic is not safe in the context of conventional oating point arithmetic.

These problems are, of course, not new ones, but have plagued numerical compu-
tation since the earliest days of digital computers. One mechanism for overcoming
these problems by applying a Prolog-like mechanism to intervals was �rst suggested
by Cleary [4]; these ideas were �rst fully implemented at Bell-Northern Research
(BNR) in BNR Prolog in 1987 and have been successfully applied to problems far
more complex than those described in [4]. Although similar in intent, Cleary's mech-
anism di�ers substantially from other constraint logic programming languages such
as CLP(<) [9], Prolog-III [5] and CHIP [7] in that it does not use term-rewriting
or symbolic equation solving techniques. In many repects the interval constraint
system of BNR Prolog most closely resembles the one described by Hyv�onen in [8].

In the remainder of this paper we briey describe the underlying mechanism
behind constraint interval arithmetic and provide an overview of its salient features.

2 Relational Interval Arithmetic
One of BNR Prolog's experimental features is a system for treating arithmetical
relations over the reals that is distinct from the usual evaluation mechanism for
functional arithmetic. Since the system e�ectively has two inference engines for
arithmetic, there needs to be a means for determining which executable statements
are to be handled by which engine. The mechanism for doing this is a new primitive
type called an interval and instances of intervals are introduced by range \declara-
tions" which look like:

range(Quantity, [Lowerbound, Upperbound])

2

where Quantity is a logic variable which becomes instantiated to the newly created
interval object, and Lowerbound and Upperbound are oating point numbers which
de�ne initial limitations on the range of Quantity. Subsequent actions may (and
usually do) further narrow the range.

Whenever an arithmetic statement referring to interval objects is encountered,
it is passed to the relational interval arithmetic subsystem for processing. Arith-
metical statements are those stating equalities (==), inequalities (like =< and >=)
and statements of the form Variable is Expression which de�ne new interval
quantities as arithmetic functions of existing interval quantities.

The relational interval arithmetic subsystem can be thought of as a specialized
inference engine, for reasoning about the order properties of real numbers that is in-
tegrated with a constraint management system. The system retains a representation
of all the arithmetic constraints so far imposed and the current best estimate of range
restrictions on all intervals. The addition of an arithmetic statement augments the
constraint set and may cause the range estimates for all intervals to narrow as the
constraints are propagated through the network. If an inconsistency is discovered,
failure is reported to the Prolog system, which backtracks to the last choice point.
Careful control of rounding direction is required to ensure that an inconsistency is
never falsely reported.

There are two interpretations of what an interval represents. Under the numeric
interpretation, an interval represents an unknown real number that lies somewhere
between the upper and lower bounds. Under the regional interpretation, an interval
is the set of all points between its upper and lower bounds. This is analogous to the
two interpretations of a logic variable: one where the variable refers to something
speci�c (but unknown) and the other where the variable refers to the set of all its
valid instantiations.

An interval whose upper and lower bounds are completely unknown, an inde�nite
interval, is represented as having the bounds given by the largest positive and largest
negative interval numbers represented by the system, which we will denote by �1
and +1 respectively.

As forward computation proceeds, intervals can narrow by raising their lower
bounds, lowering their upper bounds, or both. Narrowing occurs when additional
constraints are applied to an interval, much as uni�cations increase the degree of
instantiation of logic variables. Backtracking may undo the narrowing of an interval
in much the same way that an ordinary variable is unbound.

For example, the simple query
?- range(X, [2.5, 6.3]), (X >= 3.9, X =< 4.7)

; (X >= 2.8, X =< 3.5).
�rst narrows X to the solution [3.8999,4.7001] and on backtracking through the \;"
(Prolog \or") narrows X to the alternative solution [2.7999, 3.5001].

3

2.1 Constraint Propagation
What happens when an arithmetic expression containing intervals is evaluated?
First it is transformed into a sequence of primitive interval operations which is
then used to construct a constraint network similar to a data ow network. Data
may ow (as a wave of \narrowing") through the network in any direction, but
always from the more constrained to the less constrained variables. The undirected
nature of the graph corresponds directly to its ability to represent relations and
not just functions. The ow of data may be in a cyclic pattern corresponding to a
�xpoint iteration, just as may occur in a spreadsheet system. At any time during
the constraint propagation an inconsistency may be detected. As described above,
this terminates the iteration and reports failure to the Prolog engine.

To address the problems of standard Prolog arithmetic outlined in the intro-
duction, the primitive elements of the constraint network must satisfy three formal
properties. First, interval variables can only narrow the ranges of their input inter-
vals, i.e. intervals can never grow. Secondly, all the primitive constraint equations
or inequalities should be idempotent operations, i.e. applying an operation twice is
the same as applying it once. Third, these operations on intervals should be isotone,
i.e. preserve set inclusion order. More precisely, if an interval which has an initial
range Ri narrows to a �nal range Rf , then, any other initial range Qi � Ri willnarrow to a �nal range Qf such that Qf � Rf .When these three properties are satis�ed by the individual primitive operations,
arbitrary sequences of such operations will converge to results that are independent
of the actual order of operations. As a consequence, the detailed scheduling of the
primitive operations for execution is a matter of e�ciency only, and is therefore a
natural candidate for parallel processing. By lattice-theoretic arguments, one can
show that the total operation will also be narrowing, idempotent, and isotone and
that successive macro operations commute and satisfy an associative law (i.e. \," is
both commutative and associative).

A class of issues alluded to in the introduction, those due to the limited precision
of oating point arithmetic, is handled by the combination of two techniques. One
is the use of outward rounding in all computations|the fundamental principle of
functional interval arithmetic introduced in [11]|which ensures that all computed
intervals are large enough to contain all \true" answers. The other is the use of
interval intersection to implement equality. The idempotent, commutative, and
associative laws of intersection correspond to the reexive, symmetric, and transitive
laws of equality, respectively. This combination ensures that the truth of all the
algebraic laws of the real numbers are formally preserved. As a consequence, it
becomes possible to employ safely both symbolic and numeric techniques in the
same application, and thereby bene�t from their complementary strengths.

This approach also has the e�ect that all detected inconsistencies have the force
of a constructive proof that no solution exists (over the mathematical reals) for the
stated problem. However, if no inconsistency is detected, the computed narrowings

4

must be given a conditional interpretation: if solutions exist given the initial interval,
they must be contained in the output intervals.
2.2 Equality and Inequality
One way to narrow an interval is by constraining it to be equal to another interval.
If two intervals range(X, [Xl, Xu]) and range(Y, [Yl, Yu]) are constrained by
equality, X==Y, then both X and Y are narrowed to the interval [max(Xl,Yl), min(Xu,Yu)].
In other words equating the intervals X and Y intersects them and imposes that
constraint downstream. This notion of equality should be contrasted with that of
equality in functional interval arithmetic where two intervals are equal if and only if
their bounds are the same. Of course, if the ranges of X and Y do not intersect then
equating them fails, thus forcing backtracking. The expression not(X==Y) succeeds
if X and Y have no points in common and does no narrowing of either X or Y. In
e�ect, not(X==Y) can be used to test that two intervals are disjoint.

Equating two intervals can be understood in either the numeric or the regional
interpretation. The equality constraint between X and Y can be read as either \the
real number denoted by the interval X is the same as the real number denoted by
the interval Y" or as \the region spanned by X is the same as the region spanned by
Y".

Another way to narrow intervals is by evaluating inequality relations. If X =
[Xl; Xu] and Y = [Yl; Yu] the narrowing obtained by the constraint X =< Y is
computed by intersecting X with [�1; Yu] and Y with [Xl;+1]. For example, if
X=[2,4] and Y=[1,6] and the expression X =< Y is evaluated then Y is narrowed
to [2,6] and X is not narrowed.
2.3 Arithmetic Operations
All the basic arithmetic operations can be used in expressing interval constraints.
To do this, we �rst need to de�ne the basic arithmetic functions on intervals. For
any binary functional operation � 2 f�;+;�;�g on intervals [Xl; Xu] and [Yl; Yu],we can de�ne its functional evaluation to the interval [A;B] by

[A;B] [Xl; Xu]� [Yl; Yu]
where

A glbfx� yjx 2 [Xl; Xu] and y 2 [Yl; Yu]g
B lubfx� yjx 2 [Xl; Xu] and y 2 [Yl; Yu]g

For the implementation of this idea, it is necessary to consider all the special cases
(such as division for intervals that span zero). But in the simplest case, where � is
continuous and monotone in both variables,

[A;B] [Xl; Xu]� [Yl; Yu]
5

where
A min#(Xl � Yl; Xl � Yu; Xu � Yl; Xu � Yu)

and
B max"(Xl � Yl; Xl � Yu; Xu � Yl; Xu � Yu)

Since a computed operation � causes rounding errors the min and max functions
must round down (#) and up (") respectively.

Now we can de�ne all the interval relations in terms of the functional operations.
For example the relational equation X + Y == Z is computed by

[Z 0l ; Z 0u] \f[Zl; Zu]; [Xl; Xu] + [Yl; Yu]g;
[X 0l ; X 0u] \f[Xl; Xu]; [Zl; Zu]� [Yl; Yu]g;
[Y 0l ; Y 0u] \f[Yl; Yu]; [Zl; Zu]� [Xl; Xu]g:

where the primed bounds refer to the values for the intervals after the relational
equation is evaluated and \ is the function that returns the intersection of two
intervals. It follows from this de�nition of relational addition that the evaluation of
a relational equation may well narrow all the intervals in it. For example evaluating
the equation X + Y == Z, for initial values X=[3,7], Y=[2,8] and Z=[4,6] narrows all
three intervals: X to [3,4], Y to [2,3] and Z to [5,6]1.
2.4 Critical Path Analysis
The following example solves a simple critical path analysis (PERT) problem. Let
the time required to complete an activity, the activity time, be the di�erence between
the start time and the �nish time. Let the slack time be the di�erence between the
latest and the earliest times an activity can be completed without disrupting the
project. The critical path is then the list of activities between start and �nish
which have no slack time. Now we show how to formulate a critical path scheduling
problem using equality and inequalities on intervals.Figure 1 shows a network of activities (a-g) labeled by their activity times. Giventhat the Start time is 0 and that the Total time is unknown (but constrained to beless than the deadline), planning is done by constraining each start and �nish timefor each activity to be Start + Duration == Finish, and then constraining eachstart and �nish time for each activity to obey the precedence orderings de�ned bythe digraph. The resulting critical path is marked by the bold arrows.
?- create_intervals([AFinish, BFinish, CFinish,DFinish, EFinish, FFinish, GFinish,

1For this example the declarative reading of X + Y == Z, in the numeric interpretation is \thesum of some point in [3,4] and some point in [2,3] is equal to some point in [5,6]". Note, however,that if, downstream X narrows to the point [4,4] and Y to [3,3] then X + Y == Z is now false andsuch a narrowing forces failure.
6

a

c

d

e

f
Deadline

10

20

30

18

8

3

bStart
g
4

Figure 1: Critical Path Scheduling Problem
Total, AStart, BStart, CStart,DStart, EStart, FStart, GStart]),Start = 0, Deadline = 50, Total =< Deadline,AFinish == AStart + 10, BFinish == BStart + 20,CFinish == CStart + 30, DFinish == DStart + 18,EFinish == EStart + 8, FFinish == FStart + 3,GFinish == GStart + 4,Start =< AStart, Start =< BStart, Start =< CStart,AFinish =< DStart, BFinish =< DStart,BFinish =< EStart, CFinish =< EStart,AFinish =< FStart, DFinish =< FStart,EFinish =< GStart, FFinish =< GStart,GFinish =< Total.% create_intervals/1 recursively applies the% range declaration to a list of variable.create_intervals([]).create_intervals([I|Is]) :-range(I,[_, _]),create_intervals(Is).

The narrowing of the activity times for each activity is performed simply by the
inequality constraints on the start times of each activity and the equality constraints
given by activities; no further algorithm is necessary.
2.5 Numerical Equation Solving
Some systems of simultaneous equations, linear and non-linear, can be solved using
the narrowing induced by the constraint network alone. However, since the con-
straint satisfaction mechanism for narrowing intervals is based on local propagation
(and not on term-rewriting), it is not su�cient on its own to solve even simple sets
of linear equations unless they are in triangular form. This well known limitation of
local propagation methods can be overcome with the use of additional techniques

7

described in [2] and [4].
In essence these techniques involve the formulation of explicit algorithms for

exploring the validity of subdivisions for the intervals in the constraint network.
Consequently, di�erent algorithms may be better suited to di�erent problems. In
particular, it is possible to minimize the amount of work that the interval constraint
management system does for speci�c problems. For instance, the problem of �nding
roots of a function Y == f(X) can be made more e�cient by a search procedure that
implements a generalized Bernoulli method for subdividing intervals. The method
consists in subdividing sub-ranges of X only if the interval Y contains 0 but without
actually imposing the constraint that it does until the subdivisions have been done.
The generic solver for BNR Prolog takes 2 seconds on a Mac-II to �nd all three
roots for the equation 35x256 � 14x17 + x = 0.

3 Comparisons with other Systems
Other constraint logic programming systems such as CLP(<) [9], Prolog-III [5],
Bertrand [10], CHIP [7] and Trilogy [1] all solve constraint satisfaction problems
di�erently from BNR Prolog. Most of the systems that contain equation solvers
usually operate only on systems of linear equations, or in the case of CLP(<) de-
lay the evaluation of non-linear equations until such time as they are su�ciently
constrained that they become linear. Systems like CHIP and Trilogy, impose con-
straints either on �nite sets or on integer- valued intervals. (For a more detailed
comparison of some of these systems with BNR Prolog, see [3].)

BNR Prolog, on the other hand, has focused on the use of local propagation
techniques on constraint networks of closed intervals on the real line (see [6]). This
has the advantage over some other CLP systems in that the domain of application is
extended to non-linear problems on the reals, not just to linear problems (see [12] for
examples of optimization and equation solving problems using interval arithmetic).
However, the problems for which local constraint propagation is not particularly
well suited, such as linear programming, are not solved e�ciently with divide and
conquer algorithms. Moreover, there may be situations which require that a complex
set of equations be reduced to a simpler set, for which a term rewriting system is
preferable. Indeed, BNR Prolog could be augmented by a symbolic solver which
could simplify the constraint network for the numerically based interval arithmetic
subsystem.

4 Conclusions
Relational arithmetic on intervals makes it possible to express arithmetic logically
in the framework of a logic programming language such as Prolog. It can also be
used to contain oating point errors and to solve simultaneous non-linear equations

8

by systematically narrowing constrained intervals. In addition, the relational char-
acter of interval arithmetic encourages an economy of coding: inverse functions, for
example don't need to be de�ned explicitly. But most importantly, the preservation
of algebraic properties of expressions in interval arithmetic makes it safe to combine
symbolic techniques with numerical techniques because the same expressions can be
used either to evaluate numeric or symbolic values. Interval arithmetic operations
are declarative, logical and correct.

References
[1] Andrews, J. Trilogy User Manual, Complete Logic Systems Inc. 1987.
[2] BNR Prolog User Guide and Reference Manual, BNR 1988.
[3] Brown, R. G., Chinneck, J.W. and Karam, G. \Optimization with Constraint Pro-gramming Systems" in Impact of Recent Computer Advances on Operations Research,North Holland, January 1989.
[4] Cleary, J. C. \Logical Arithmetic", Future Computing Systems,2 (2), pp.125{149,1987.
[5] Colmerauer, A. \Opening the Prolog-III Universe", Byte Magazine, August 1987.
[6] Davis, E. \Constraint propagation with interval labels", Arti�cial Intelligence, 32pp. 281{331, 1987.
[7] Dincbas M., Simonis H. and van Hentenryck P. \Soving Large Combinatorial Prob-lems in Logic Programming", Journal of Logic Programming 8, 1&2, pp. 72-93, 1990.
[8] Hyv�onen, E. (1989) \Constraint Reasoning Based on Interval Arithmetic", Proced-ings of IJCAI 1989 pp. 193{199.
[9] Ja�ar, J. and Michaylov, S. \Methodology and Implementation of a CLP system",Proc. 4th Int. Conf. on Logic Programming, J-L. Lassez (Ed), MIT Press, 1987.
[10] Leler, W. Constraint Programming Languages their speci�cation and generation,Addison-Wesley pp. 202, 1988.
[11] Moore, R. E. (Ed.) Interval Analysis, Prentice Hall, New Jersey, 1966.
[12] Moore, R. E. (Ed.) Reliability in Computing (The role of Interval Methods in Scien-ti�c Computing), Perspectives in Computing, 19, Academic Press 1988.

9

